• Title/Summary/Keyword: 선형 변수

Search Result 2,447, Processing Time 0.024 seconds

Parametric System Identification (1) (매개변수 시스템 식별법 (1))

  • Go, Sang-Ho
    • ICROS
    • /
    • v.18 no.3
    • /
    • pp.37-42
    • /
    • 2012
  • 이번 편에서는 첫 번째 편에서 소개된 블랙박스 모델을 결정하는 기법 중의 하나인 매개변수 시스템 식별법을 소개한다. 이 기법은 식별하고자 하는 대상 시스템에 대하여 매개변수들로 표현되는 여러 가지 후보 모델들을 선정한 후 확정된 입출력 데이터와 추정 알고리즘을 적용하고 여러 가지 검증과정을 통하여 실제 시스템의 데이터에 가장 가까운 특성을 보이는 모델을 선정하는 방법이다. 이를 위해서 본 편에서는 선형-시불변 시스템의 블랙박스 식별에서 종종 사용되는 여러 가지 모델구조들을 소개한다.

Quantification of Positive and Negative Emotions by Single-Channel Brain Wave (단일 전극 뇌파에 의한 쾌, 불쾌 감성의 정량화)

  • 최정미;황민철;배병훈;유은경;오상훈
    • Science of Emotion and Sensibility
    • /
    • v.1 no.1
    • /
    • pp.59-67
    • /
    • 1998
  • 뇌전위에서 개인차가 없는 일반적인 규칙ㅇ르 지닌 두개의 정보 변수, 즉 ILF와 IHF를 발견하였다. 이러한 일반성을 지닌 정보 변수가 청각, 후각, 촉각 자극에 의해 유발된 쾌하거나 불쾌한 감성 상태를 구분할 수 있으며 전두엽에서 그 경향이 두드러짐을 확인하였다. 전두엽의 뇌전위에서 감성 자극이 주어지가 전과 자극이 주어지는 동안의 ILF, IHF값을 정규화함으로써 새로운 변수, Relative Quantified Emotional State(RQES)를 구현하였다. RQES는 쾌, 중립, 불쾌한 감성의 정도를 선형적으로 정량화하였다. 따라서 하나의 전극으로 측정한 전두엽부분의 뇌전위로부터 RQES값을 계산하면 인간의 쾌, 불쾌 감성을 신뢰도있게 정량화 할 수 있다.

  • PDF

Detection of Structural Damage from Measured Acceleration (측정 가속도를 사용한 구조 손상 진단)

  • 곽임종
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.144-151
    • /
    • 1997
  • 구조물로부터 측정된 가속도 시간이력을 이용하여 구조손상을 찾아내고 평가하는 기법을 제시하였다. 구조계의 손상을 찾아내는 알고리즘의 주요한 수단으로써 parametric system identification 방법을 사용하였고 매개변수화된 구조물의 최적 매개변수를 추정하기 위해 구속된 비선형 최적화기법을 사용하였다. 손상된 부재를 분리하기 위한 방법으로서 적합적 매개변수 모음법을 적용하였고 손상의 정도를 통계적으로 평가하기 위하여 측정된 가속도 시간이력에 time window 기법을 적용하였다. 가속도 이력 측정에 있어서의 불충분성과 측정오차를 고려하여 알고리즘을 개발하였고, 조화진동하중으로 구조물을 가진하여 구조 손상을 진단하는 수치모의 실험을 실시하였다.

  • PDF

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Testing for Nonlinear Threshold Cointegration in the Monetary Model of Exchange Rates with a Century of Data (화폐모형에 의한 환율 결정 이론의 비선형 문턱 공적분 검정: 100년간 자료를 중심으로)

  • Lee, Junsoo;Strazicich, Mark C.
    • KDI Journal of Economic Policy
    • /
    • v.31 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • The monetary model suggests that nominal exchange rates between two countries will be determined by important macroeconomic variables. The existence of a cointegrating relationship among these fundamental variables is the backbone of the monetary model. In a recent paper, Rapach and Wohar (2002, Journal of International Economics) advance the literature by testing for linear cointegration in the monetary model using a century of data to increase power. They find evidence of cointegration in five or six of ten countries. We extend their work to the nonlinear framework by performing threshold cointegration tests that allow for asymmetric adjustments in two regimes. Asymmetric adjustments in exchange rates can occur, for example, if transactions costs are present or if policy makers react asymmetrically to changing fundamentals. Moreover, whereas Rapach and Wohar (2002) found it necessary to exclude the relative output variable in some cases to maintain the validity of their cointegration tests, we can include this variable as a stationary covariate to increase power. Overall, using their same long-span data, we find more support for cointegration in a nonlinear framework.

  • PDF

Topology Optimization of Perpendicular Magnetic Recording System by Considering Magnetic Nonlinearity (재료의 비선형을 고려한 수직기록장치의 위상최적화)

  • Park, Soon-Ok;Yoo, Jeong-Hoon;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.821-827
    • /
    • 2010
  • This paper proposes a density method based topology optimization of a perpendicular magnetic recording system design in which the saturation effect is taken into account. During the topology optimization process in magnetic fields, the magnetic reluctivity is updated in accordance with the changes in element density determined by a sensitivity analysis. The magnetic reluctivity is determined from a B-H curve and is used to represent nonlinear material property, i.e., the saturation effect. The sensitivity for a generalized response functional is formulated using the adjoint variable method in which the nonlinear property is taken into account and the objective function is set such that the magnetic energy in the media is maximized. Effects due to the nonlinear property can be observed from a numerical study in which the linear and the nonlinear topology optimization results are compared.

Evaluation of Nonlinear Seismic Response of RC Shear Wall in Nuclear Reactor Containment Building (원자로건물의 철근콘크리트 전단벽 비선형 지진응답 평가)

  • Kim, Dae Hee;Lee, Kyung Koo;Koo, Ji Mo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • Interest in the seismic performance of nuclear facilities under strong earthquakes has increased because their nonlinear response is important. In this paper, we proposed appropriate parameters for the nonlinear finite element analysis of a concrete material model, for a reinforced concrete (RC) shear wall in nuclear facilities: maximum tensile strength, dilation angle, and damage parameter. The study of the effects of the important parameters, on the nonlinear behavior and shear failure mode of the RC shear wall having low aspect ratio, was conducted using ABAQUS finite element analysis program. Based on the study results the nonlinear response of a nuclear reactor containment building (RCB) subjected to a strong earthquake was evaluated using nonlinear time-history analysis.

A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics (추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어)

  • Choi, Hyeung-Sik;Park, Han-Il;Roh, Min-Shik;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1203-1211
    • /
    • 2009
  • The dynamics of underwater vehicles can be greatly influenced by the dynamics of the vehicle thrusters. The control of the state of the hovering or very slow motion of the underwater vehicle is most important for automatic docking or control of the manipulator of the vehicle. The dynamics of the thruster based on the electric motor is nonlinear and has uncertain parameters. Since the dynamics of the vehicle coupled with the dynamics of the thruster is nonlinear and has uncertain parameters, a robust control is very effective for a desired motion tracking of the uncertain and nonlinear vehicle. In this paper a study was performed on the robust control scheme of the very slow motion or hovering motion of the underwater vehicle actuated by the electric motor. Also, a concurrent control on the state of the vehicle with nonlinearity and uncertain parameters was performed. A sliding mode control algorithm out of robust controllers was designed and applied, which compensates the nonlinear forces and uncertain parameters of the vehicle and actuator. Through a computer simulation, the proposed control scheme was compared with a linear PD controller and its superior performance was validated.

Estimation of design parameters of TBM using punch penetration and Cerchar abrasiveness test (압입시험 및 세르샤 마모시험에 의한 TBM의 설계변수 추정)

  • Jeong, Ho-Young;Lee, Sudeuk;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Linear cutting test is known to be very effective to determine machine parameters (i.e. thrust force and torque) and to estimate penetration rate of TBM and other operation conditions. Although the linear cutting test has significant advantages, the test is expensive and time-consuming because it requires large size specimen and high load capacity of the testing machine. Therefore, a few empirical prediction models (e.g. CSM, NTNU and QTBM) alternatively adopt laboratory index tests to estimate design parameters of TBM. This study discusses the estimation method of TBM machine parameters and disc cutter consumption using punch penetration test and Cerchar abrasion test of which the researches are rare. The cutter forces and cutter consumption can be estimated by the empirical models derived from the relationship between laboratory test result with field data and linear cutting test data. In addition, the estimation process was programmed through which the design parameters of TBM (e.g. thrust, torque, penetration rate, and cutter consumption) are automatically estimated using laboratory test results.

A Simple Model for the Nonlinear Analysis of an RC Shear Wall with Boundary Elements (경계요소를 가진 철근콘크리트 전단벽의 비선형 해석을 위한 간편 모델)

  • Kim, Tae-Wan;Jeong, Seong-Hoon;You, Tae-Sang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • A simple model for reinforced concrete shear walls with boundary elements is proposed, which is a macro-model composed of spring elements representing flexure and shear behaviors. The flexural behaviour is represented by vertical springs at the wall ends, where the moment strength and rotational capacity of the wall are based on section analysis. The shear behaviour is represented by a horizontal spring at the wall center, where the key parameters for the shear behavior are based on the flexural behaviour since the shear walls with boundary elements are governed by the flexure. The proposed model was prepared with the results of hysteretic tests of the shear walls, and then the reliability of the hysteretic rule and variables was investigated by nonlinear dynamic analyses. Using parametric study with nonlinear dynamic analyses, the effect of the variables on demand and capacity, which are major parameters in seismic performance evaluation, are investigated. Results show that the measured and calculated shear forces versus the shear distortion relationships are slightly different, but the global response is well simulated. Furthermore, the demand and capacity are also changed in a similar way to the change in the major parameters so that the proposed model may be appropriate for reinforced concrete shear walls with boundary elements.