• Title/Summary/Keyword: 선형필터 모델

Search Result 168, Processing Time 0.025 seconds

Prediction Performance of Hybrid Least Square Support Vector Machine with First Principle Knowledge (First Principle을 결합한 최소제곱 Support Vector Machine의 예측 능력)

  • 김병주;심주용;황창하;김일곤
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.744-751
    • /
    • 2003
  • A hybrid least square Support Vector Machine combined with First Principle(FP) knowledge is proposed. We compare hybrid least square Support Vector Machine(HLS-SVM) with early proposed models such as Hybrid Neural Network(HNN) and HNN with Extended Kalman Filter(HNN-EKF). In the training and validation stage HLS-SVM shows similar performance with HNN-EKF but better than HNN, whereas, in the testing stage, it shows three times better than HNN-EKF, hundred times better than HNN model.

Auditory Representations for Robust Speech Recognition in Noisy Environments (잡음 환경에서의 음성 인식을 위한 청각 표현)

  • Kim, Doh-Suk;Lee, Soo-Young;Kil, Rhee-M.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.90-98
    • /
    • 1996
  • An auditory model is proposed for robust speech recognition in noisy environments. The model consists of cochlear bandpass filters and nonlinear stages, and represents frequency and intensity information efficiently even in noisy environments. Frequency information of the signal is obtained by zero-crossing intervals, and intensity information is also incorporated by peak detectors and saturating nonlinearities. Also, the robustness of the zero-crossings in estimating frequency is verified by the developed analytic relationship of the variance of the level-crossing interval perturbations as a function of the crossing level values. The proposed auditory model is computationally efficient and free from many unknown parameters compared with other auditory models. Speaker-independent speech recognition experiments demonstrate the robustness of the proposed method.

  • PDF

Adaptive Output Feedback Control of Unmanned Helicopter Using Neural Networks (신경회로망을 이용한 무인헬리콥터의 적응출력피드백제어)

  • Park, Bum-Jin;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.990-998
    • /
    • 2007
  • Adaptive output feedback control technique using Neural Networks(NN) is proposed for uncertain nonlinear Multi-Input Multi-Output(MIMO) systems. Modified Dynamic Inversion Model(MDIM) is introduced to decouple uncertain nonlinearities from inversion-based control input. MDIM consists of approximated dynamic inversion model and inversion model error. One NN is applied to compensate the MDIM of the system. The output of the NN augments the tracking controller which is based upon a filtered error approximation with online weight adaptation laws which are derived from Lyapunov's direct method to guarantee tracking performance and ultimate boundedness. Several numerical results are illustrated in the simulation of Van der Pol system and unmanned helicopter with model uncertainties.

Intelligent Maneuvering Target Tracking Based on Noise Separation (잡음 구분에 의한 지능형 기동표적 추적기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.469-474
    • /
    • 2011
  • This paper presents the intelligent tracking method for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. K-means clustering and TS fuzzy system are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by K-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. While calculating expected value, the non-linearity of the maneuvering target is recognized as linear one by dividing acceleration and the capability of Kalman filter is kept in the filtering process. The error for the non-linearity is compensated by approximated acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.

Video De-noising Using Adaptive Temporal and Spatial Filter Based on Mean Square Error Estimation (MSE 추정에 기반한 적응적인 시간적 공간적 비디오 디노이징 필터)

  • Jin, Changshou;Kim, Jongho;Choe, Yoonsik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1048-1060
    • /
    • 2012
  • In this paper, an adaptive temporal and spatial filter (ATSF) based on mean square error (MSE) estimation is proposed. ATSF is a block based de-noising algorithm. Each noisy block is selectively filtered by a temporal filter or a spatial filter. Multi-hypothesis motion compensated filter (MHMCF) and bilateral filter are chosen as the temporal filter and the spatial filter, respectively. Although there is no original video, we mathematically derivate a formular to estimate the real MSE between a block de-noised by MHMCF and its original block and a linear model is proposed to estimate the real MSE between a block de-noised by bilateral filter and its original block. Finally, each noisy block is processed by the filter with a smaller estimated MSE. Simulation results show that our proposed algorithm achieves substantial improvements in terms of both visual quality and PSNR as compared with the conventional de-noising algorithms.

Recognition for Noisy Speech by a Nonstationary AR HMM with Gain Adaptation Under Unknown Noise (잡음하에서 이득 적응을 가지는 비정상상태 자기회귀 은닉 마코프 모델에 의한 오염된 음성을 위한 인식)

  • 이기용;서창우;이주헌
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • In this paper, a gain-adapted speech recognition method in noise is developed in the time domain. Noise is assumed to be colored. To cope with the notable nonstationary nature of speech signals such as fricative, glides, liquids, and transition region between phones, the nonstationary autoregressive (NAR) hidden Markov model (HMM) is used. The nonstationary AR process is represented by using polynomial functions with a linear combination of M known basis functions. When only noisy signals are available, the estimation problem of noise inevitably arises. By using multiple Kalman filters, the estimation of noise model and gain contour of speech is performed. Noise estimation of the proposed method can eliminate noise from noisy speech to get an enhanced speech signal. Compared to the conventional ARHMM with noise estimation, our proposed NAR-HMM with noise estimation improves the recognition performance about 2-3%.

An Experimental Method of Model Installed Dynamic Positioning System for Drillship (드릴쉽에 대한 DPS 모형시험 기법개발)

  • Dong-Yeon Lee;Mun-Keun Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.2
    • /
    • pp.33-43
    • /
    • 2001
  • The design and construction of special purpose vessels such as drillship and shuttle tankers have been increased. These vessels install the DPS(dynamic positioning systems) to maintain the position and heading for long-time operation. This paper deals with the experimental method for model-based DP system and the control theory and filter algorithms. In this experiment, the length of model ship is 4 meters and it has three thrusters to maintain the position. The ability of tracking along the given course and keeping of heading in waves are confirmed. For the calculation of thruster input the PID control theory are adopted and the effects of PID gain were investigated. To estimate the low frequency motions Kalman filter and digital filter were used and their effects were investigated.

  • PDF

Application of the CS-based Sparse Volterra Filter to the Super-RENS Disc Channel Modeling (Super-RENS 디스크 채널 모델링에서 CS-기반 Sparse Volterra 필터의 적용)

  • Moon, Woo-Sik;Park, Se-Hwang;Im, Sung-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.59-65
    • /
    • 2012
  • In this paper, we investigate the compressed sensing (CS) algorithms for modeling a super-resolution near-field structure (super-RENS) disc system with a sparse Volterra filter. It is well known that the super-RENS disc system has severe nonlinear inter-symbol interference (ISI). A nonlinear system with memory can be well described with the Volterra series. Furthermore, CS can restore sparse or compressed signals from measurements. For these reasons, we employ the CS algorithms to estimate a sparse super-RENS read-out channel. The evaluation results show that the CS algorithms can efficiently construct a sparse Volterra model for the super-RENS read-out channel.

Performance Improvement of Towed Array Shape Estimation Using Interpolation (보간법을 이용한 견인 어레이 형상 추정 기법의 성능 개선)

  • 박민수;도경철;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.72-76
    • /
    • 2000
  • A calibration technique is proposed to improve the performance of 2-D towed array shape estimation using the Kalman filter. In the case of using displacement sensors, 2-D hydrophone positions estimated by the Kalman filter are calculated by assuming that the adjacent hydrophones are horizontally equi-spaced so that maximum distance is equal to the array length. The assumption causes errors in estimating hydrophone positions. The proposed technique using linear model approximation or spline interpolation can reduce the errors by exploiting the fact that the whole length of array is preserved whatever the array shape is. The numerical experiments show that the proposed method is very effective.

  • PDF

차량의 자동주행을 위한 목표물 추적 알고리듬: AIMM-UKF

  • 김용식;홍금식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.166-166
    • /
    • 2004
  • 운전자 보조시스템에는 적응순항제어 (adaptive cruise control), 차선변경 (lane change), 충돌경고 (collision warning), 충돌회피 (collision avoidance), 및 자동주차 (automatic parking) 등이 있다. 이런 운전자 보조시스템은 어떤 목적을 가지고 있다. 운전자의 부담을 줄이고 안전을 위하여 차량의 주행방향에 있는 장애물이나 차량을 감지하여 차량간의 안전거리론 유지하고 자동차가 일정 속도를 유지하도록 한다. 운전자 보조시스템의 효율은 센서들로부터 얻어진 정보의 해석에 달려있다.(중략)

  • PDF