주로 열상(FLIR: Forward-Looking Imfra-Red)을 이용하여 표적을 탐지하는 자동표적탐지(ATD: Automatic Target Detection)장비는 전처리단계, 잠재적 표적탐지 및 클러터 제거 등 3단계를 적용하여 표적을 탐지한다. 열상영상의 전처리단계 및 잠재적 표적탐지단계를 통해 열상영상의 모든 표적후보를 구한다. 이때, 표적후보군에는 표적 및 클러터가 공존하게 되는데, 클러터 제거 단계에서 표적후보군에 포함된 클러터를 제거하여 표적을 분류함으로서 오경보(False Alarm)를 줄이는 기능을 한다. 본 논문은 표적탐지단계 중 클러터 제거방법에 대한 연구내용에 대해 기술하였으며, 연구의 특징은 표적후보군에 포함된 클러터를 제거하기 위하여 표적후보영상의 주성분분석법(PCA: Principal Component Analysis)을 이용한 형태적 특징 및 외곽선 영상(Edge Image)의 통계적 특징을 이용한 표적제거기법을 제시하였다. 주성분분석법 특징값은 미리 선정한 대표표적에 대해 차원축소 고유벡터를 구한 후 표적후보군 영상을 고유벡터에 투영한 유클리드 거리를 이용하였으며, 통계적 특징은 표적후보군의 외곽선영상에 대해 분산 및 표준편차를 이용한 통계적 특징을 적용하였다. 주성분 특징과 통계적 특징을 이용하여 표적과 클러터를 구분하기 위해 선형판별법(LDA: Linear Discriminant Analysis)을 적용하였다. 제안된 알고리즘의 성능확인을 위해 수행한 시뮬레이션 결과 제안된 알고리즘이 주성분분석법 특징 또는 통계적 특징 등 단일특징을 적용하였을 때 보다 좋은 결과를 도출하였다.
얼굴인식 등과 같은 고차원 식별문제에서는 샘플패턴의 수가 패턴의 차원보다 작아지게 된다. 이러한 상황에서 차원을 축소하기위해 선형판별분석법을 적용할 경우, 희소성(Small Sample Size: SSS)문제가 발생한다. 최근, SSS 문제를 해결하기 위하여 비유사도에 기반 한 식별법(Dissimilarity-Based Classification: DBC)을 이용하는 방법이 검토되었다. DBC에서는 특징 벡터 대신에 학습 샘플들로부터 추출한 프로토타입들과의 비유사도를 측정하여 입력 패턴을 식별하는 방법이다. 본 논문에서는 비유사도 표현단계와 DBC 학습단계에서 퓨전기법을 중복 적용하는 다단계 퓨전기법(Multi-level Fusion Strategies: MFS)으로 DBCs를 최적화시키는 방법을 제안한다. 제안 방법을 벤취마크 얼굴영상 데이터베이스를 대상으로 실험한 결과, 식별률을 향상시킬 수 있음을 확인하였다.
전기화학 소자의 성능을 이해하는 데 있어서 전해질 내 이온 전도 기작을 이해하는 것은 매우 중요하다. 그러나 이론적/실험적 어려움으로 인해 아직 완벽한 전해질 내 이온 전도 기작 분석법은 정립되지 못했다. 대신 이온 전도 기작을 기술하기 위한 몇 가지 수학적 모델이 고안되었으며, 본 총설에서는 대표적인 사례인 아레니우스(Arrhenius) 모델과 Vogel-Tammann-Fulcher(VTF) 모델을 소개한다. 일반적으로 이 두 모델은 이온 전도도, 확산 계수, 점도와 같은 이동 특성(transport properties)의 온도 의존성을 기술하는 데 사용되며, 주어진 전해질에 적합한 수학적 모델은 이동 물성의 로그 값과 온도의 역수가 이루는 그래프의 선형성을 통해 판별할 수 있다. 현재 많은 전해질 연구는 다양한 조성과 온도 범위에서 두 모델 중에서 더 적합한 모델을 선정하고, 이를 통해 이온 전도 기작 분석과 활성화 에너지를 도출한다. 향후 전해질 이동 특성을 더욱 정확하게 기술할 수 있는 모델의 개발이 필요하다.
MCN 스포츠 중계의 미디어 인게이지먼트, 미디어 공감, 그리고 미디어 가치와의 관계를 규명하기 위한 이 연구는 MCN 스포츠 중계 시청 경험을 가진 시청자 총 324명을 대상으로 비확률 표본 표집 중에서 목적 표집법을 통해 설문조사를 실시하였다. 탐색적 요인분석을 실시하여 타당도를 확인하였으며, Cronbach's α 검사를 실시하여 신뢰도를 조사하였다. 또한 상관관계분석을 실시하여 판별타당도를 검증하였으며, 연구가설을 검증하기 위해 선형 회귀분석을 실시하여 다음과 같은 결론을 도출하였다. 첫째, MCN 스포츠방송과 관련하여 미디어 인게이지먼트가 미디어 가치에 긍정적인 영향을 미치는 것으로 나타났다. 둘째, 미디어 인게이지먼트가 미디어 공감에 긍정적인 영향을 미치는 것으로 나타났다. 셋째, 미디어 공감이 미디어 가치에 긍정적인 영향을 미치는 것으로 나타났다.
본 논문은 차세대 지능형 기술 분야중 하나인 유비쿼터스 컴퓨팅 환경 기반에서의 얼굴인식을 제안한 것으로, 모바일 장치 중 하나인 핸드폰 카메라를 이용하여 얼굴 영상을 취득하고, 이를 이용하여 얼굴의 특징을 추출하고 인식하는 과정을 통해 모바일 보안을 생각하고자 한다. 얼굴인식을 위해 제안하는 방법은 PCA와 Fuzzy-LDA를 사용하였으며, 모바일 환경에서 데이터의 량을 줄이기 위해 다해상도 분석을 기반으로 하는 이산 웨이블렛을 사용하였다. 또한 획득된 특징데이터의 연결성을 확인하여 인식률을 얻기 위해 유클리디언 거리 측정 법을 사용하였다. 마지막으로 본 논문에서 제안한 방법의 유용성을 알아보기 위해 핸드폰 카메라를 이용해 실험한 결과 일반 카메라에서 획득한 영상에 비해 모바일 장치로부터 획득한 영상이 저해상도를 갖음에도 불구하고 높은 성능을 갖음을 확인할 수 있었다.
영구자석 동기전동기에서 고정자 권선의 단락으로 인해 발생하는 권선 고장을 동작 중 실시간으로 검출할 수 있는 고장 진단 기법을 제시한다. 제안된 기법은 고조파 분석을 통해 q축 전류의 2차 고조파를 관찰함으로서 이루어지며 고장이 없는 정상 조건에서의 고조파 데이터와 비교를 통해서 고장을 판별한다. 임의의 정상 동작 조건에서의 고조파 데이터는 선형 보간법과 몇 개의 사전 측정된 고조파 데이터를 통해서 구해진다. 제안된 고장 검출 기법의 타당성을 입증하기 위해 내부 고정자의 권선 단락이 가능한 전동기가 제작되었으며 전체 구동 시스템과 고조파 분석 알고리즘 및 고장 검출 알고리즘이 DSP TMS320F28335에 의해 구현되어 실험이 수행된다. 제안된 방법은 부가적인 진단 장비를 필요로 하지 않으며 정상 상태 조건만 만족된다면 동작 중 실시간으로 고장을 검출할 수 있다.
황남대총 98호분 북분과 남분에서 출토된 유리시료 40점에 대한 과학적인 분석을 실시하였다. 유리의 성분조성은 주사전자현미경-에너지분산형분광기(SEM-EDS)를 사용하여 정량분석하였고 다변량해석법을 통하여 시료를 분류하였다. 그 결과 시료 40점 모두 Na2O를 약 20%정도 함유한 소다-석회(Na2O-CaO-SiO2)유리임을 확인하였으며, 다시 5개 주성분(SiO2, Al2O3, Na2O, CaO, K2O)으로 다변량해석[주성분분석(PCA)]을 실시한 결과 2개의 군(群)으로 분류되었다. I군(群)에 포함된 시료는 Al2O3의 농도가 9.7%로 높고 CaO의 농도는 2.2%인데 비하여 II군(群)에서는 각각 3.2%, 4.9%의 범위로 나타났다. 특히 시료 No. 12의 노란색으로 편석된 부분을 미소부위 XRD로 분석한 결과 PbSnO3임을 국내 최초로 확인할 수 있었다. 연(鉛)을 함유한 시료 중 No. 12, 17은 열이온화질량분석기(TIMS)로 납동위원소비를 측정하였고 선형판별식분석법(SLDA)을 이용하여 납의 산지를 추정하였다. 그 결과 각각 중국 남부, 한국 남부의 납광석을 사용한 것으로 나타났다.
최근 들어 기존의 녹색 바탕의 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만, 아직 기존의 차량 번호판이 신 차량 번호판으로 전면 교체 되지 않아 두 번호판 모두 사용되고 있기 때문에 주차 관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판 특징에 맞는 인식 시스템이 요구된다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 기존의 녹색 번호판과 흰색 번호판 모두를 추출하고 인식 할 수 있는 알고리즘에 관한 연구를 수행하였다. 다양한 환경에서 획득한 차량 영상으로부터 번호판 영역을 추출하기 위하여 형태학적 특징을 이용하였고, 추출된 번호판 영역의 수평, 수직 히스토그램과 문자의 상대적 위치 정보를 이용하여, 문자를 분리하였다. 최종적으로, 분리된 문자를 인식하기 위해 주성분 분석법(PCA : Principal Component Analysis)과 선형 판별 분석법(LDA : Linear Discriminant Analysis)을 적용하여 인식 시스템을 구성하였다. 실험 결과, 불규칙한 조명 상태에서도 상대적으로 높은 추출률과 문자 인식률을 나타내었다.
본 논문에서는 비제약적 얼굴 데이터 베이스를 위한 확장성 있는 얼굴 인식 방법을 연구하고, 간단한 실험 결과를 소개한다. 기존의 얼굴 인식 연구들은 주로 조명, 얼굴 각도, 표정, 배경 등 제약이 있는 환경에서의 정확도 향상에 초점을 맞추고 있어서 비제약적 얼굴 데이터 베이스에 사용하기에 적합하지 않다. 제안하는 얼굴인식 방법은 비제약적 얼굴 인식을 위한 특징 추출 알고리즘으로, 먼저 지역적 특징이 존재하는 눈, 코, 입과 같이 얼굴의 중요한 특징을 나타내는 영역을 분리한다. 각 얼굴 주요 위치는 고차원의 다중 스케일 국부 이진패턴 히스토그램(Multi-scale LBP histogram) 특징 벡터로 기술된다. 단일 얼굴 주요 위치에 해당하는 다중 스케일 국부 이진패턴 히스토그램 특징 벡터는 주성분 분석법(PCA: Principal Component Analysis)과 선형 판별 분석법(LDA: Linear Discriminant Analysis)의 차원 축소 과정을 통해 저차원 얼굴 특징 벡터를 생성한다. 저차원 얼굴 특징 벡터는 랭크 획득과 Precision at k(p@k) 성능 평가 방법을 이용하여 제안한 알고리즘의 얼굴 인식 성능을 검증한다. 본 연구는 FERET, LFW 및 PubFig83 데이터 베이스를 이용하여 얼굴 인식 실험을 수행하였으며, 제안한 알고리즘을 이용한 얼굴 인식 방법이 기존의 방법보다 향상된 인식성능을 보였다.
본 논문은 단안 영상열에서 기하학적으로 대칭인 세 점의 움직임 벡터의 특수한 관계를 이용하는 카메라 움직임 추정기술을 제안한다. 제안하는 기술은 특징점과 외극기하적 제한조건을 사용치 않고, 카메라 회전에 의해 야기되는 움직임 벡터와 그 특성을 이용한다. 외극기하적 제한조건을 사용하는 경우에는 E-행렬이나 F-행렬의 계산을 위해 계산시간이 많이 소요되는 수치적 해법이나 반복법을 사용해야 하지만, 제안한 기술에서는 선형방정식을 움직임 벡터에 적용하여 상하회전각, 좌우회전각, 정면회전각과 배율을 한번에 추정한다. 그리고 배경판별식을 고안하여 배경영역만을 계산에 반영하기 때문에 계산이 보다 정확하고 MPEG-4 요구조건을 수용하기에 충분히 빠르다. 다양한 영상에 대한 실험결과를 통하여 제안된 기술의 타당성과 광범위한 응용가능성을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.