• Title/Summary/Keyword: 선형전동기

Search Result 539, Processing Time 0.034 seconds

Embedded Control System of Segway Robot using Model Based Design (모델기반 설계를 이용한 이륜 도립진자 로봇의 임베디드 제어시스템)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2975-2982
    • /
    • 2010
  • In this paper, embedded control system of segway robot using model based design is presented. Design of control program in embedded system can be implemented simply and easily by model based design method using MATLAB/SIMULINK. Segway robot is consisted of a NXT Mindstorms controller, two DC servo motors, a ultrasonic sensor, a gyro sensor, and a light sensor. It is a unstable nonlinear system and has a control problem of body pitch angle. So controller of segway robot is designed using state feedback LQR control. It is confirmed through design and experiment of controller that the model based design method, that is not depend on target processor, has merits compared with the text based design in aspects such as a program development, an error detection/modify, and an insight of software structure.

Simple Robust Digital Position Control Algorithm of BLDD Motor using Neural Network with State Feedback (상태궤환과 신경망을 이용한 BLDD Motor의 간단한 강인 위치 제어 알고리즘)

  • 고종선;안태천
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.214-221
    • /
    • 1998
  • A new control approach using neural network for the robust position control of a BRUSHLESS direct drive(BLDD) motor is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust BLDD motor system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system will be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained by error back-propagation at each sample period to accommodate the possible variations in the parameters or load torque. And the state space analysis is performed to obtain the state feedback gains systematically. In addition, the robustness is also obtained without affecting overall system response.

  • PDF

The Characteristics of Efficiency and Torque in $L_1-B_8$ mode USM Having Linear Movement (선형 운동하는 $L_1-B_8$ 모드 초음파 전동기의 효율과 토크 특성)

  • U, Sang-Ho;Shin, Soon-In;Kim, Jin-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.585-588
    • /
    • 2002
  • The USM uses friction between a mobile part (rotor) and a vibration part(stator), which is different from the principle of the conventional motor based on the interaction of electric and magnetic fields. In this thesis, a flat-type $L_1-B_8$ mode USM was designed and fabricated the characteristics of an ultrasonic vibration. The results of fabricated USM are as follows: (1) In case of ultrasonic motor with elastic-body of stainless, when applied voltage, frequency, pressing force of rotor were 50 [V], 27.9 [kHz], 1.5 [N], 5.0[mN m] respectively, the speed of revolution could be presented up to 0 [cm/s]. (2) In case of ultrasonic motor with elastic-body of brass, when applied voltage, frequency, pressing force of rotor were 50 [V], 21.4 [kHz], 1.5 [N], 1.4[mN m]respectively, the speed of rotor revolution was presented up to 0 [cm/s]. (3) The USM of elastic-body of stainless showing 1.17[%], somewhat low, in the maximum efficiency according to torque was superior to the USM of elastic-body of brass showing 0.34 [%]. The Flat-type $L_1-B_8$ mode USM had characteristics of typical drooping torque-speed, large torque and high speed, and operating in both directions by phase reversal.

  • PDF

Characteristics Analysis of Linear Induction Motor Considering Airgap variation for Railway Transit (공극변화를 고려한 철도차량용 선형 유도전동기 특성 연구)

  • Lee, Byung-Song;Lee, Hyung-Woo;Park, Chan-Bae;Han, Kyung-Hee;Kwon, Sam-Young;Park, Hyun-June
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1610-1615
    • /
    • 2007
  • This paper presents a characteristics of linear induction motor considering airgap variation for railway transit in order to achieve high performance of the vehicle. The operating principle of a LIM(Linear induction motor) is identical to a rotary induction motor. Space-time variant magnetic fields are generated by the primary part across the airgap and induce the electro-motive force(EMF) in the secondary part, a conducting sheet. This EMF generates the eddy currents, which interact with the airgap flux and so produce the thrust force known as Loren's force. Even though the operating principal is exactly same as a rotary motor, the linear motor has a finite length of the primary or secondary parts and it causes static and dynamic end-effect which is the discontinuous airgap flux phenomenon. This end-effect causes the deterioration of the system performance, especially in high-speed operation. Another problem is that construction tolerance restricts the minimum airgap in order to prevent a collision between the primary part and the secondary reaction plate. More over, as the airgap length is getting smaller, the attraction force between the primary part and secondary parts is getting larger dramatically and the attraction force would be another friction against propulsion. Therefore, it is necessary to figure out the characteristics of linear induction motor considering airgap variation in order to achieve high performance of the vehicle. The dynamic model of LIM taking into account end-effects is derived. Then the modified mechanical load equation considering the effect of the attraction and thrust force according to the airgap variation is analyzed. The simulation results are presented to show the effect of the LIM according to the airgap variation.

  • PDF

Thrust Force Characteristics Analysis of Linear Induction Motor Considering Airgap variation for Railway Transit (공극변화를 고려한 철도차량용 선형 유도전동기 특성 연구)

  • Lee, Byung-Song
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1903-1908
    • /
    • 2008
  • This paper presents a characteristics of linear induction motor considering airgap variation for railway transit in order to achieve high performance of the vehicle. The operating principle of a LIM(Linear induction motor) is identical to a rotary induction motor. Space-time variant magnetic fields are generated by the primary part across the airgap and induce the electro-motive force(EMF) in the secondary part, a conducting sheet. This EMF generates the eddy currents, which interact with the airgap flux and so produce the thrust force known as Loren's force. Even though the operating principal is exactly same as a rotary motor, the linear motor has a finite length of the primary or secondary parts and it causes static and dynamic end-effect which is the discontinuous airgap flux phenomenon. This end-effect causes the deterioration of the system performance, especially in high-speed operation. Another problem is that construction tolerance restricts the minimum airgap in order to prevent a collision between the primary part and the secondary reaction plate. More over, as the airgap length is getting smaller, the attraction force between the primary part and secondary parts is getting larger dramatically and the attraction force would be another friction against propulsion. Therefore, it is necessary to figure out the characteristics of linear induction motor considering airgap variation in order to achieve high performance of the vehicle. The dynamic model of LIM taking into account end-effects is derived. Then the modified mechanical load equation considering the effect of the attraction and thrust force according to the airgap variation is analyzed. The simulation results are presented to show the effect of the LIM according to the airgap variation.

  • PDF

A Study on the Harmonics Simulation of the High Speed Electric Train Loads by Field Tests (현장시험에 의한 고속전철 부하의 고조파 시뮬레이션에 관한 연구)

  • Kim, Kyung-Chul;Kim, You-June
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.40-47
    • /
    • 2007
  • High speed electric trains have nonlinear loads including converters and inverters for the control synchronous motors. Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. Direct application of the harmonic assessment to the snapshot measurements would result in ambiguous conclusions depending on which instant is sampled. A cumulative probablistic approach is the most commonly used method to solve time varying harmonics. Harmonic simulations are performed to evaluate the harmonic voltage and current distortions throughout the system. This paper provides an in depth analysis on harmonics field measurement of the high speed electric train loads, harmonics assessment by the international harmonic standards IEC 61000-3-6 and IEEE Std. 519-l992, and harmonics simulation using EDSA program for the case study.

New Design of a Permanent Magnet Linear Synchronous Motor for Seamless Movement of Multiple Passive Carriers (다수의 수동형 캐리어를 연속 이송시킬 수 있는 새로운 영구자석 선형동기전동기의 설계)

  • Lee, Ki-Chang;Kim, Min-Tae;Song, Eui-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.456-463
    • /
    • 2015
  • Nowadays, small quantity batch production, which is so-called a flexible manufacturing system, is a major trend in the modern factory automation industry. The demands for new transportation system are increased gradually, with which multiple passive carriers carrying materials and semi-products are precisely and individually controlled along a single closed rail. Thus, a new type of permanent magnet linear synchronous motor (PMLSM), which consists of state coils on a single rail and PM movers as many as carriers, is proposed in this paper. The rail can be segmented as modules with pairs of coils and a current amplifier, which makes the transportation system simple; therefore, the rail can be easily extended and repaired. A design method of the new PMLSM with a single carrier is proposed, which can be thought as a new version of PMLSM, a coil-segmented coreless PMLSM (CS-CLPMLSM). Experimental setup for it is made, and propulsion results show that with the help of a new effective coil selection and switching algorithms, the conventional current-based vector control is sufficient to fulfill the position and velocity control of the new PMLSM. The proposed PMLSM is expected to fulfill seamless servo-control of multiple carriers also in process line, such as a new generation of flat panel display manufacturing line.

Dead Time Compensation of Grid-connected Inverter Using Resonant Controller (공진 제어기를 이용한 계통 연계형 인버터의 데드타임 보상)

  • Han, Sang-Hyup;Park, Jong-Hyoung;Kim, Heung-Geun;Cha, Honn-Yong;Chun, Tea-Won;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.569-576
    • /
    • 2011
  • This paper proposes a new dead time compensation method for a PWM inverter. Recently, PWM inverters are extensively used for industry applications, such as ac motor drives, distributed grid-connected systems and a static synchronous compensator (STATCOM). Nonlinear characteristics of the switch and the inverter dead time cause a current distortion and deterioration of power quality. The dominant harmonics in the output current are the $5^{th}$ and $7^{th}$ harmonics in the stationary frame, and the $6^{th}$ harmonics in the synchronous rotating frame. In this paper, a resonant controller which compensates the $6^{th}$ harmonics in the synchronous rotating frame is proposed. This method does not require any off-line experimental measurements, additional hardware and complicated mathematical computations. Furthermore, the proposed method is easy to implement and does not cause any stability problem.

A Study for Predicting Rotational Cutting Torque from Electrical Energy Required for Ground Drilling (지반절삭 전기에너지를 활용한 회전굴착토크 예측에 관한 연구)

  • Choi, Chang-Ho;Cho, Jin-Woo;Lee, Yong-Soo;Chung, Ha-Ik;Park, Yong-Boo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.57-64
    • /
    • 2007
  • This study proposes a method to estimate drilling torque during ground boring with an aid of electrical energy required for rotating a boring-auger. Ground boring is commonly used in geotechnical engineering such as preboring precast pile installation, soil-cement grouting, ground exploration and so forth. In order to understand the correlation between required electrical energy to rotate the boring auger and the drilling torque, a small laboratory apparatus was designed and a pilot study was performed. The apparatus rotates common drill bits of $D=5{\sim}25mm$ in CBR specimens. The velocity of a bit is 19 RPM and predefined using a reduction gear which connects a main rotation axis to a 25 Watts AC electrical motor shaft. In the middle of drilling the motor current increments and the drilling torque were measured and the correlation between the current and the torque was obtained through linear square fits. Based on the correlation the acquired motor current during drilling was applied to predict the drilling torque in consequent testing and the prediction results were compared to the measured torque. The comparison leads a conclusion that the motor current during drilling using electrical power may be a good indicator to estimate/determine strength characteristics of the ground.