It is important to control confounding bias when estimating the causal effect of treatment in an observational study. We illustrated that the covariate selection in the causal inference is different from the variable selection in the ANCOVA model. We then investigated the three criteria of covariate selection for controlling confounding bias, which can be used when we have inadequate information to draw a complete causal graph. VanderWeele and Shpitser (2011) proposed one of them and claimed it was better than the other two. We show by example that their criterion also has limitations and some disadvantages. There is no clear winner; however, their criterion is better (if some correction is made on its condition) than the other two because it can remove the confounding bias.
This research analyzed which average comparisons and differences between groups' view motive and selection for information sources, product properties with theater animation spectator. Based on view frequency, each of groups' organization were classified to heavy, occasional, and thinly viewers. As average comparison analysis result, firstly, view motive appeared in order to "want to see animation", "to spend time and leisure activity", "to enjoy fun activity", and "because of others canvassing or recommendation", etc. Secondly, view selection for information source appeared in order to "rumor circumstance or reputation", "theater or TV previews", "internet evaluation and grade", etc. At last, view selection for practical property appeared in order to "story", "character", "special effects", "background music", "background art", "director/directing", "manufacturer/nation", and "dubbing of artist". As difference between group result, view motive and selection for product properties appeared significant differences between each of group. To the contrary, view selection for information sources did not appeared significant differences between each of group.
Proceedings of the Korea Society of Mathematical Education Conference
/
2010.04a
/
pp.217-217
/
2010
다양한 선택이 가능한 대학 입시 선택 과정에서, 대학 및 학과별 선발 기준을 고려하여 최선의 선택을 해야 할 필요가 있다. 본 연구는 2010학년도 대학별, 학과별, 시기별 전형 기준을 근거로 이 과정을 수학적으로 모델링 한다. 그 예로 2010학년도 전형 기준을 수능 반영영역과 반영비율, 가중치 등을 고려하여 대학입시과정에서 활용될 수 있는 AHP를 통한 수학적 모델을 소개한다. 이 과정을 엑셀을 이용한 수학적 모델링으로 구현한다.
When the multicollinearity presents in the standard linear regression model, ridge regression might be used to mitigate the effects of collinearity. As the prediction-oriented criterion, the integrated mean sqare error criterion $J_w(k)$ was introduced by Lim, Choi & Park(1980). By noting the equivalent relationship between the $C_k$ criterion and $J_w(k)$ with a special choice of weight function $W(x)$, we propose a more reasonable selection rule of k w.r.t. the $C_k$ criterion than that given in Myers(1986). Next, to find the $\beta(k)$ which behaves reasonably well w.r.t. competing criteria, we adopt the minimax principle in the sense of maximizing the worst relative efficiency of k among competing criteria.
본 논문은 대학교 신입생들의 진로선택에 대한 특성을 파악하고자 실시하였다. 연구 대상자는 1개 학부, 16개 학과의 2011년 신입생 750명이었다. 구조화된 설문지를 이용하여, 대학 및 학과 선택과 사항을 파악하였으며 자기기입식으로 작성하였다. 지원한 대학의 수는 3~4개가 가장 많았으며, 고 3 시기에 대학과 전공을 주로 결정하는 것으로 나타났고, 학교보다 학과에 비중을 두고 선택하는 경우가 많았다. 진로선택 유형에서는 가족형이 가장 많았고 학교형, 독립형, 학원형 순으로 나타났다. 학과 선택시의 기준은 적성고려, 취업전망 순이었고, 입학하는 학과에 대해 대부분의 신입생들이 사전 정보와 지식을 갖고 있었다. 대학 선택시 기준은 합격 가능성이 높은 곳을 주로 선택하고 있었다. 고교교사/학교와 인터넷을 통하여 대학을 알게 된 경우가 가장 많았고, TV/라디오, 신문과 같은 매체를 통해 알게 된 경우는 아주 적었다. 따라서, 진로선택에 가장 많은 영향을 주는 부모와 가족들을 대상으로 한 대학과 전공에 대한 정확한 정보 제공이 필요하며 고교와 인터넷, 스마트폰과 같은 매체를 이용한 홍보 전략의 개발이 필요한 것으로 나타났다.
Journal of The Korean Association of Information Education
/
v.21
no.4
/
pp.437-450
/
2017
This study derived optimized teaching aids that use the physical computing method as the solution for effective software education at the elementary level. We set standard for selecting physical computing teaching aids in elementary-level by gathering the opinions from previous studies and think tanks and then applied the standard to some aids and choose one. We also made lesson plan and tried it to the experimental group. Subsequently, students' logical thinking skills showed a statistically significant improvement in terms of the t-test. Also, in the analysis of the effect size, it was shown to have a positive influence on the improvement of the students' logical thinking skills. Additionally, survey of satisfaction evaluation from the students showed that the teaching aid selection standard was effective in selecting suitable teaching aids for elementary students and that the classroom activities utilizing physical computing teaching aids were at a suitable level for elementary students.
Park, Aaron;Baek, Sung-June;Park, Jun-Qyu;Seo, Yu-Gyung;Won, Yonggwan
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.3
/
pp.124-131
/
2016
Baseline correction is very important due to influence on performance of spectral analysis in application of spectroscopy. Baseline is often estimated by parameter selection using visual inspection on analyte spectrum. It is a highly subjective procedure and can be tedious work especially with a large number of data. For these reasons, it is an objective and automatic procedure is necessary to select optimal parameter value for baseline correction. Asymmetrically reweighted penalized least squares (arPLS) based on penalized least squares was proposed for baseline correction in our previous study. The method uses a new weighting scheme based on the generalized logistic function. In this study, we present an automatic selection of optimal parameter for baseline correction using arPLS. The method computes fitness and smoothness values of fitted baseline within available range of parameters and then selects optimal parameter when the sum of normalized fitness and smoothness gets minimum. According to the experimental results using simulated data with varying baselines, sloping, curved and doubly curved baseline, and real Raman spectra, we confirmed that the proposed method can be effectively applied to optimal parameter selection for baseline correction using arPLS.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.339-341
/
1998
다층 퍼셉트론 학습은 학습 데이터의 능동적인 선택 여부에 따라 능동적 학습(Active learning)과 피동적 학습(Passive learning)으로 구분할 수 있다. 기존의 능동적 학습 방법들은 학습 데이터의 중요도를 측정할 수 있는 기준(measure)을 제시하고 이 기준에 따라 학습 데이터를 선택하는 방법을 취하고 있다. 이 방법들은 학습 데이터 선택을 위해 Hessian Approximation과 같은 복잡한 계산이나 학습 데이터를 선택하는 과정에 있어서 데이터의 중요도를 평가하기 위한 반복적인 계산을 필요로 한다. 본 논문에서는 학습 데이터 선택 시 반복적인 계산이 필요하지 않는 비교사 학습을 이용한 능동적 학습 데이터 선택 방법을 제안하고 그 수렴 특성과 일반화 성능을 분석한다. 또한 비교 실험을 통하여 제안된 방법이 기존의 능동적 학습방법보다 간단한 계산만으로 수렴 속도를 향상시키며 일반화에도 뒤떨어지지 않음을 보인다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2000.04a
/
pp.683-686
/
2000
본 연구에서는 이동기준 위치등록(Movement-Based Registration, MBR)과 선택적 페이징(Selective Paging, SP)을 근간으로 하여 무선 채널에서의 신호 트래픽을 최소화할 수 있는 방법을 제안하고 성능을 분석하였다. 먼저, 사각형 셀 환경에서 선택적 페이징 방법을 적용할 경우 페이징 영역을 적절히 선택함으로써 기존 방법보다 페이징 부하를 줄일 수 있는 방안을 제시하고 성능을 분석하였다. 또한 이동국이 이미 통과한 셀들의 ID를 캐시에 유지함으로써 위치등록 횟수를 줄일 수 있는 개선된 이동기준 위치등록(Improved MBR, IMBR) 방법을 제시하고 성능을 분석하였다. 본 연구의 결과는, 시스템의 운용환경에 따라 적절한 위치등록 방법을 선택, 운용하는 데에 효과적으로 이용될 수 있다.
This paper concerns continuous density HMM topology optimization. There have been several researches for HMM topology optimization. BIC (Bayesian Information Criterion) is one of the well known optimization criteria, which assumes statistically well behaved homogeneous model parameters. HMMs, however, are composed of several different kind of parameters to accommodate complex topology, thus BIC's assumption does not hold true for HMMs. Even though BIC reduced the total number of parameters of HMMs, it could not improve the recognition rates. In this paper, we proposed two new model selection criteria, HBIC (HMM-oriented BIC) and BIC_Anti. The former is proposed to improve BIC by estimating model priors separately. The latter is to combine BIC and anti-likelihood to accelerate discrimination power of HMMs. We performed some comparative research on couple of model selection criteria for online handwriting data recognition. We got better recognition results with fewer number of parameters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.