• Title/Summary/Keyword: 선택적 학습률

Search Result 94, Processing Time 0.022 seconds

Fuzzy Neural Network Using a Learning Rule utilizing Selective Learning Rate (선택적 학습률을 활용한 학습법칙을 사용한 신경회로망)

  • Baek, Young-Sun;Kim, Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.672-676
    • /
    • 2010
  • This paper presents a learning rule that weights more on data near decision boundary. This learning rule generates better decision boundary by reducing the effect of outliers on the decision boundary. The proposed learning rule is integrated into IAFC neural network. IAFC neural network is stable to maintain previous learning results and is plastic to learn new data. The performance of the proposed fuzzy neural network is compared with performances of LVQ neural network and backpropagation neural network. The results show that the performance of the proposed fuzzy neural network is better than those of LVQ neural network and backpropagation neural network.

An Improvement of the Outline Mede Error Backpropagation Algorithm Learning Speed for Pattern Recognition (패턴인식에서 온라인 오류역전파 알고리즘의 학습속도 향상방법)

  • 이태승;황병원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.616-618
    • /
    • 2002
  • MLP(multilayer perceptron)는 다른 패턴인식 방법에 비해 몇 가지 이점이 있어 다양한 문제영역에서 사용되고 있다 그러나 MLP의 학습에 일반적으로 사용되는 EBP(error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 실시간 처리를 요구하는 문제나 대규모 데이터 및 MLP 구조로 인해 학습시간이 상당히 긴 문제에서 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 MLP의 내부변수를 갱신하는 은라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 EBP 알고리즘에서는 내부 가중치 갱신시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률을 고정함으로써 온라인 방식에서 패턴별 갱신의 특성을 완전히 활용하지 못하는 비효율성이 발생한다. 또한, 학습도중 패턴군이 학습된 패턴과 그렇지 못한 패턴으로 나뉘고 이 가운데 학습된 패턴은 학습을 위한 계산에 포함될 필요가 없음에도 불구하고, 기존의 온라인 EBP에서는 에폭에 할당된 모든 패턴을 일률적으로 계산에 포함시킨다. 이 문제에 대해 본 논문에서는 학습이 진행됨에 따라 패턴마다 적절한 학습률을 적용하고 필요한 패턴만을 학습에 반영하는 패턴별 가변학습률 및 학습생략(COIL) 방댑을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.

  • PDF

Off-line Selection of Learning Rate for Back-Propagation Neural Ntwork using Evolutionary Adaptation (진화 적응성을 이용한 신경망의 학습률 선택)

  • 김흥범;정성훈;김탁곤;박규호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.52-56
    • /
    • 1996
  • In trainir~ga back-propagation neural network, the learning speed of the network is greatly affected by its learning rate. Most of off-line fashioned learning-rate selection methods, however, are empirical except for some deterministic methods. It is very tedious and difficult to find a good learning rate using the empirical methods. The deterministic methods cannot guarantee the quality of the quality of the learning rate. This paper proposes a new learning-rate selection method. Our off-line fashioned method selects a good learning rate through stochastically searching process using evolutionary programming. The simulation results show that the learning speed achieved by our method is superior to that of deterministic and empirical methods.

  • PDF

Mortality Prediction of Older Adults Using Random Forest and Deep Learning (랜덤 포레스트와 딥러닝을 이용한 노인환자의 사망률 예측)

  • Park, Junhyeok;Lee, Songwook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.10
    • /
    • pp.309-316
    • /
    • 2020
  • We predict the mortality of the elderly patients visiting the emergency department who are over 65 years old using Feed Forward Neural Network (FFNN) and Convolutional Neural Network (CNN) respectively. Medical data consist of 99 features including basic information such as sex, age, temperature, and heart rate as well as past history, various blood tests and culture tests, and etc. Among these, we used random forest to select features by measuring the importance of features in the prediction of mortality. As a result, using the top 80 features with high importance is best in the mortality prediction. The performance of the FFNN and CNN is compared by using the selected features for training each neural network. To train CNN with images, we convert medical data to fixed size images. We acquire better results with CNN than with FFNN. With CNN for mortality prediction, F1 score and the AUC for test data are 56.9 and 92.1 respectively.

Comparative Evaluation of Chest Image Pneumonia based on Learning Rate Application (학습률 적용에 따른 흉부영상 폐렴 유무 분류 비교평가)

  • Kim, Ji-Yul;Ye, Soo-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.595-602
    • /
    • 2022
  • This study tried to suggest the most efficient learning rate for accurate and efficient automatic diagnosis of medical images for chest X-ray pneumonia images using deep learning. After setting the learning rates to 0.1, 0.01, 0.001, and 0.0001 in the Inception V3 deep learning model, respectively, deep learning modeling was performed three times. And the average accuracy and loss function value of verification modeling, and the metric of test modeling were set as performance evaluation indicators, and the performance was compared and evaluated with the average value of three times of the results obtained as a result of performing deep learning modeling. As a result of performance evaluation for deep learning verification modeling performance evaluation and test modeling metric, modeling with a learning rate of 0.001 showed the highest accuracy and excellent performance. For this reason, in this paper, it is recommended to apply a learning rate of 0.001 when classifying the presence or absence of pneumonia on chest X-ray images using a deep learning model. In addition, it was judged that when deep learning modeling through the application of the learning rate presented in this paper could play an auxiliary role in the classification of the presence or absence of pneumonia on chest X-ray images. In the future, if the study of classification for diagnosis and classification of pneumonia using deep learning continues, the contents of this thesis research can be used as basic data, and furthermore, it is expected that it will be helpful in selecting an efficient learning rate in classifying medical images using artificial intelligence.

온톨로지의 구축과 학습: 상하위 관계

  • Choe, Gi-Seon;Ryu, Beop-Mo
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.24 no.4 s.203
    • /
    • pp.24-30
    • /
    • 2006
  • 온톨로지의 기본개념, 응용 분야 및 학습 단계에 대하여 간단하게 설명하였고, 온톨로지 학습단계에서 전문 분야의 개념간 계층 관계 학습 방법에 대하여 자세하게 알아보았다. 전문분야 개념을 표현하는 전문 용어 사이의 계층 관계를 학습하는 방법은 크게 규칙 기반 방법, 통계 기반 방법 그리고 용어의 전문성과 유사도를 이용하는 방법으로 나눌 수 있다. 규칙 기반 방법은 비교적 정확한 결과를 얻을 수 있는 장점이 있지만 재현율이 낮은 단점이 있다. 기존은 통계 기반 방법에서는 재현율이 높은 장점이 있지만 정확률이 낮은 단점이 있다. 또한 이 방법에서는 순수하게 통계 정보만 이용하기 때문에 오류에 대한 분석이 어려운 단점이 있다. 용어의 전문성과 용어간 유사도를 이용한 방법에서는 용어의 전문성을 이용하여 기존의 계층 구조에서 상위에 후보를 선택하고, 용어간 유사도를 이용하여 선택한 후보를 정렬하여 최적의 후보를 찾는다. 이 방법은 상위어 선정 과정을 두 단계로 분리하여 수행하기 때문에 오류 분석이 용이한 장점이 있다. 향후 온톨로지 학습 과정에서 계층 관계뿐 아니라 인과 관계 및 다양한 관계의 학습과 관련된 연구가 진행되어야 한다.

A Performance Analysis of Model Training Due to Different Batch Sizes in Synchronous Distributed Deep Learning Environments (동기식 분산 딥러닝 환경에서 배치 사이즈 변화에 따른 모델 학습 성능 분석)

  • Yerang Kim;HyungJun Kim;Heonchang Yu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.79-80
    • /
    • 2023
  • 동기식 분산 딥러닝 기법은 그래디언트 계산 작업을 다수의 워커가 나누어 병렬 처리함으로써 모델 학습 과정을 효율적으로 단축시킨다. 배치 사이즈는 이터레이션 단위로 처리하는 데이터 개수를 의미하며, 학습 속도 및 학습 모델의 품질에 영향을 미치는 중요한 요소이다. 멀티 GPU 환경에서 작동하는 분산 학습의 경우, 가용 GPU 메모리 용량이 커짐에 따라 선택 가능한 배치 사이즈의 상한이 증가한다. 하지만 배치 사이즈가 학습 속도 및 학습 모델 품질에 미치는 영향은 GPU 활용률, 총 에포크 수, 모델 파라미터 개수 등 다양한 변수에 영향을 받으므로 최적값을 찾기 쉽지 않다. 본 연구는 동기식 분산 딥러닝 환경에서 실험을 통해 최적의 배치 사이즈 선택에 영향을 미치는 주요 요인을 분석한다.

Enhanced Self-Generation Supervised Learning Alrorithm Using ARTI and Delta-Bar-Delta Method (ART1과 Delta-Bar-Delta 방법을 이용한 개선된 자가 생성 지도 학습 알고리즘)

  • 백인호;김태경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.71-75
    • /
    • 2003
  • 오류 역전파 학습 알고리즘을 이용하여 영상 인식에 적용 할 경우에는 은닉층의 노드 수를 경험적으로 설정하므로, 학습시간과 지역최소화 및 정체현상이 발생한다. 그리고 ARTI 알고리즘은 입력 패턴과 저장 패턴간의 측정 방법인 유사성 검증 방법과 경계 변수의 설정에 따라 인식률이 좌우된다. 경계 변수의 값이 크면 입력 패턴과 저장 패턴사이에 약간의 차이만 있어도 새로운 카테고리(Category)로 분류하고, 반대로 경계 변수의 값이 적으면 입력 패턴과 저장 패턴 사이에 많은 차이가 있더라도 유사성이 인정되어 입력 패턴들을 대략적으로 분류한다. 따라서 ART1 알고리즘을 영상 인식에 적용하기 위해서는 경계 변수를 경험적으로 설정하므로 인식률에 부정적인 영향을 갖는 문제점이 있다. 따라서 본 논문에서는 개선된 ART1 알고리즘과 지도 학습 방법을 결합하여 신경망의 은닉층 노드를 동적으로 변화시키는 자가 생성지도 학습 알고리즘을 제안한다. 제안된 신경망에서 입력층과 은닉층의 학습 구조에는 ART1 알고리즘을 개선하여 적용하고, 은닉층과 출력층의 학습 구조에는 은닉층에서 승자로 선택된 노드와 출력층 노드와 연결된 가중치만을 조정하고 Delta-Bar-Delta 알고리즘을 적용한다. 제안된 방법의 학습 성능을 분석하기 위하여 학생증 영상에서 추출한 학번 패턴 분류에 적용한 결과, 기존의 신경망 학습 알고리즘보다 학습 성능이 개선됨을 확인하였다.

  • PDF

Defect Diagnostics of Gas Turbine Engine Using Support Vector Machine and Artificial Neural Network (Support Vector Machine과 인공신경망을 이용한 가스터빈 엔진의 결함 진단에 관한 연구)

  • Park Jun-Cheol;Roh Tae-Seong;Choi Dong-Whan;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.102-109
    • /
    • 2006
  • In this Paper, Support Vector Machine(SVM) and Artificial Neural Network(ANN) are used for developing the defect diagnostic algorithm of the aircraft turbo-shaft engine. The system that uses the ANN falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the Separate Learning Algorithm(SLA) of ANN has been proposed by using SVM. This is the method that ANN learns selectively after discriminating the defect position by SVM, then more improved performance estimation can be obtained than using ANN only. The proposed SLA can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure.

A Time Series Forecasting Using Neural Network by Modified Adaptive learning Rates and Initial Values (적응적 학습방법과 초기값의 개선에 의한 신경망 모형을 이용한 시계열 예측)

  • Yoon, Yeo-Chang;Lee, Sung-Duck
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2609-2614
    • /
    • 1998
  • In this work, we consider the forecasting performance between nearal network and Box-Jenkins method for time series data. A modified learning process is developed for neural network approach at time eries data, ie, properly adaptive learning rates selecting by orthogonal arrays and dynamic selecting of initial values using Easton's cotroller box. We can obtain good starting points with dynamic graphics approach. We use real data sets for this study : the Wolf yearly sunspot numbers between 1700 and 1988.

  • PDF