• Title/Summary/Keyword: 선택적환원촉매

Search Result 260, Processing Time 0.032 seconds

Effect of CeO2 Addition on De-CH4 and NOx Performance (CH4와 NOx 저감 성능에 관한 CeO2 첨가의 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.473-479
    • /
    • 2017
  • Due to environmental pollution, hazards of the human body, and global warning, changes in the power train of automobiles are intensifying, and the market forelectronic vehicles is rising. Also, in order to meet the stricter emission regulations forautomobiles with internal combustion engines based on fossil fuel, the proportion of after-treatments for vehicles and vessels is increasing gradually. The objective of this study is to investigate the effectsfrom additive ceric oxide ($CeO_2$) loading amounts to improve the methane ($CH_4$) and nitric oxide (NOx) abatement ability of the natural gas oxidation catalysts(NGOC) reducing toxic gases emitted from compressed natural gas (CNG) buses. Three kinds of NGOC were prepared under the following conditions: fresh and $700^{\circ}C$ for 12hr thermal aging, and the reduction performance of toxic gases was evaluated. Fresh $1Pt-3Pd-1Rh-3MgO-6CeO_2/(Al+Z)$ NGOC containing 6wt% $CeO_2$ had the highest dispersivity of palladium (Pd) with high selectivity to $CH_4$ and improved harmful gas reduction performance. The NGOC with 6wt% $CeO_2$ loaded the least decreased in the dispersivity of the noble metal, and showed the highest reduction of harmful gases due to the thermal durability of $CeO_2$.

Numerical Study on the Baffle Structure for Determining the Flow Characteristic in Small Scale SCR System (소형 SCR 시스템 내 유동 제어를 위한 Baffle의 구조 결정에 관한 수치해석적 연구)

  • Park, Mi-Jung;Chang, Hyuk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.862-869
    • /
    • 2010
  • Numerical analysis was done to evaluate the gas flow distribution in small scale SCR system which has $2.4{\times}2.4{\times}3.1\;m^3$ in volume and 25,300 Sm3/hr in flue gas flow capacity. Various types of baffles proposed for controlling the flow uniformity were evaluated by the CFD analysis to find the optimal geometry of the baffle in the SCR system. By installing baffles in the SCR system, the RMS (%) value was raised up to 6.2% compared with the baffle-uninstalled state. The effect of baffle thicknesses on the RMS (%) value was not shown within 0 and 8 mm in thickness, but the RMS (%) value was raised by 2.5% in 10 mm of baffles thickness, which causes the unstability in flow. By comparison between the shape of baffles, it is known that the lattice type baffle has better performance in controlling the flow uniformity than the circular truncated cone type baffle or mixer type baffle. RMS (%) values have more that 10% difference according to the shape of baffle type.

The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip (Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Park, Jung-Kwon;Lee, Ho-Kil;Oh, Se-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

Experimental Study on Characteristics of NOX Reduction with Urea-Selective Catalytic Reduction System in Diesel Passenger Vehicle (승용 디젤차량에서 Urea-SCR 시스템의 NOX 저감 특성에 관한 실험적 연구)

  • Park, Seungwon;Lee, Seangwock;Cho, Yongseok;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • $NO_X$ reducing technique such as LNT, LNC, and selective catalytic reduction (SCR) have been developed and applied, especially on heavy-duty vehicles. However, it is expected that $NO_X$ reduction techniques will also be applied to diesel passenger vehicles. The urea-SCR system is receiving attention as the most effective $NO_X$ reduction technology without a fuel penalty. Thus, many advanced countries are developing this technology. The urea-SCR system sprays an aqueous urea solution that separates $NO_X$ into $N_2$ and $H_2O$, which are harmless and emitted into the atmosphere. The urea injected in front of the SCR catalyst should be changed to 100% $NH_3$, which is required for $NO_X$ reduction in the SCR system to maximize the reduction efficiency. The purpose of this study was to determine the basic data for the urea-SCR system to maximize the $NO_X$ reduction efficiency by understanding the $NO_X$ reduction characteristics in a real passenger vehicle to comply with the post EURO-6 emission regulation.

Selective Recovery of Platinum Group Metals by Solvent Extraction and Electrolysis in Non-aqueous Solution Based on Ionic Liquids (이온성액체 기반 비수계 용액에서 용매추출과 전해에 의한 백금족 금속의 분리회수)

  • Park, Gwang-won;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.46-53
    • /
    • 2019
  • In this study, the extraction and reduction behavior of platinum group metals in a non-aqueous solvent based on ionic liquids was investigated in order to confirm a new extraction technology of platinum group metals. Platinum was selectively extracted using an ionic liquid $[C_4mim]PF_6$ from a mixed solution of $PdCl_2$, $PtCl_4$ and $RhCl_3$ dissolved with concentration ratio of 10:1:0.5 M. After stripping of the metals by 1 M $HNO_3$ solution, the platinum was preferentially reduced by aqueous electrolysis on gold electrode at -0.8 V (vs. Pt-QRE). The residual palladium and rhodium were transferred to ionic liquid of $[C_4mim]Cl$. The metallic palladium and rhodium could be sequentially reduced on gold and STS304 as working electrodes by non-aqueous electrolysis, respectively.

Spent SCR Catalyst Leach Liquor Processed for Valuable Metals Extraction by Solvent Extraction Technique (SCR 폐촉매 침출액으로부터 용매추출법에 의한 유가금속의 추출)

  • Sola, Ana Belen Cueva;Jeon, Jong-Hyuk;Lee, Jin-Young;Parhi, Pankaj Kumar;Jyothi, Rajesh Kumar
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.55-61
    • /
    • 2020
  • Selective catalytic reduction (SCR) has been a promising technology to reduce the air pollution caused by nitrogen oxides (NOx) in several industries. The consumption of SCR catalysts increases every year as technology evolves, however those have a limited lifespan and usually end up in landfills after they deactivate. Currently, the most widely used catalyst for and stationary applications is V2O5-WO3/TiO2 which can contain around 50% wt V2O5 and 7-10% wt of WO3. The vast uses for both vanadium and tungsten and the worldwide interest in recycling methods that allow for the extraction of metals from secondary sources represent the major motivation for this research. The extraction time, pH dependency, extraction concentration studies were carried out using Aliquat 336 in exxol D80 as the extractant. It was determined that to optimize the extraction of both metals 30min of contact time with an organic phase containing 0.5mol/L of Aliquat 336 are needed at a slightly acidic pH (~5.0). In addition, counter McCabe-Thiele studies allowed us to determine that one stage is necessary for the removal of 99% of vanadium while 2 stages are necessary for the extraction of tungsten and counter current simulations proved that the theoretical approach was correct.

An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System (복합대기오염 저감 시스템을 위한 오존 고속산화 기반 고도산화공정)

  • Uhm, Sunghyun;Hong, Gi Hoon;Hwang, Sangyeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.237-242
    • /
    • 2021
  • Simultaneous removal technologies of multi-pollutants such as particulate matters (PMs), NOx, SOx, VOCs and ammonia have received consistent attention due to the enhancement of pollutant abatement efficiency in addition to the stringent environmental regulation and emission standard. Pretreatment of insoluble NO by an ozone oxidation can be considered to be more effective route for saving space occupation as well as operation cost in comparison with that of traditional selective catalytic reduction (SCR) process. Moreover the primary advantage of ozone oxidation process is that the simultaneous removal with acidic gas including SOx is also available. Herein, we highlight recent studies of multi-pollutant abatement via ozone oxidation process and the promising research topics for better application in industrial sectors.

A Study on the Effect of De-NOx Device on GHG Emissions (De-NOx 저감장치가 온실가스 배출량에 미치는 영향 연구)

  • Kim, Sungwoo;Kim, Jeonghwan;Kim, Kiho;Oh, Sang-Ki
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.212-220
    • /
    • 2018
  • As increase the number of vehicles, the issue of greenhouse gas that was emitted by them became important. As a result, greenhouse gas (GHG) regulations are being strengthened and efforts are being actively made to reduce greenhouse gas emissions in the automotive industry. In the other hand, regulations for harmful emission of vehicles have been reinforced by step. Especially, the lastly applied step, so called Euro 6, not only decreased NOx limit down to half of Euro 5 but also introduced real driving emission limit for NOx and PN. It is a challenge for manufacturers to meet the recent GHG regulation as well as the latest emission regulation. To overcome these regulations a De-NOx after-treatment system is being applied to diesel vehicles that are known emitting the lowest GHG among conventional internal combustion engines. At the time of the introduction of Euro 6 emission standard in Korea, in the domestic fuel economy certification test, some diesel vehicles emitted more $CH_4$ than Euro 5 vehicles. As a result, it was confirmed that LNT-equipped vehicles emitted a high level $CH_4$ and the level exceeded the US emission standard. In order to determine the reason, various prior literature was investigated. However, it was difficult to find a detailed study on the methane increase with LNT. In this paper, to determine whether the characteristics of vehicles equipped with LNT the affects the above issue and other greenhouse gases, 6 passenger cars were tested on several emission test modes and ambient temperatures with a environment chamber chassis dynamometer. 2 cars of these were equipped with LNT only, other 2 cars had SCR only, and LNT + SCR were applied to remaining 2 cars. The test result shown that the vehicles equipped with LNT emitted more $CH_4$ than the vehicles with SCR only. Also, $CH_4$ tended to increase as the higher acceleration of the test mode. However, as the test temperature decreases, $CH_4$ tended to decreased. $CO_2$ was not affected by kinds of De-NOx device but characteristic of the test modes.

A study on Property of Emission Gas by the Content Variation of Urea (UREA의 함량 변화에 따른 배출가스 특성분석)

  • Kang, Hyungkyu;Doe, Jinwoo;Hwang, Inha;Im, Jaeheuk;Ha, Jonghan;Na, Byungki
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.24-32
    • /
    • 2015
  • National and international regulations on the exhaust gases of diesel engines are being strengthened, and a study of the combutsion engine and the post-porcessing system are in progress as a variety of ways. There are many techniques for the removal of nitrogen oxide like HC-SCR, LNT, Urea-SCR. And the technical development on the Urea-SCR owing to high conversion efficiency and fuel economy characteristics has being processed. This study investigated the physical/chemical properties of urea according to the change of the urea content, and were analysed the characteristic of exhaust gas. According to the increase of urea content, the contests of biuret aldehyde, phosphate content was increased and the changes of emission quantity of carbon monoxide, hydrocarbons and particulate matter in the exhaust gas was very slight. The emission quantity of NOx was decreased in accordance with increasing the urea content and it was shown to be more than 80 % in the urea solution having more than 30 wt%.

A Study of the Reduction of Diesel-Engine Emissions for Off-Road Vehicles (비도로 차량용 디젤엔진의 배기가스 저감에 관한 연구)

  • Cho, Gyu-Baek;Kim, Hong-Suk;Kang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.577-583
    • /
    • 2011
  • To meet the requirements of the Tier 4 interim regulations for off-road vehicles, emissions of particulate matter (PM) and nitrogen oxides (NOx) must be reduced by 95% and 30%, respectively, compared to current regulations. In this research, both the DPF and HPL EGR systems were investigated, with the aim of decreasing the PM and NOx emissions of a 56-kW off-road vehicle. The results of the experiments show that the DOC-DPF system is very useful for reducing PM emissions. It is also found that the back pressure is acceptable, and the rate of power loss is less than 5%. By applying the HPL EGR system to the diesel engine, the NOx emissions under low- and middle-load conditions are reduced effectively because of the high differential pressure between the turbocharger inlet and the intake manifold. The NOx emissions can be decreased by increasing the EGR rate, but total hydrocarbon (THC) emission increases because of the increased fuel consumption needed to compensate for the power loss caused by EGR and DPF.