• Title/Summary/Keyword: 선캠브리아

Search Result 50, Processing Time 0.021 seconds

Late Quaternary Stratigraphy and Unconformity of the Banweol Tidal-Flat Deposits(upper tidal flat) and Unconformity, Kyunggi Bay, West Coast of Korea (한국 서해 경기만 반월 조간대(상부조간대) 퇴적층의 제4기 후기 층서와 부정합)

  • 박용안;임동일;김수정
    • The Korean Journal of Quaternary Research
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2000
  • The late Quaternary stratigraphy and basal unconformity (nonconformity) of the intertidal deposits (upper tidal flat) in the Banweol tidal basin in the Kyunggi Bay, west coast of Korea has been investigated and established. The Unit I (middle to late Holocene upper intertidal deposit) and Unit II (pre-Holocene fluvial to alluvial deposit) in descending order are classified and interpreted. The basement rocks of the Banweol tidal basin is dominantly preCambrian metamorphic rocks on which Unit II is overlying unconformably. In short, the late Quaternary stratigraphy and unconformity of the Banweol tidal flat deposits are established and interpreted in terms of sedimentology and sea-level fluctuation history during late Quaternary.

  • PDF

$^{40}Ar-^{39}39/Ar$ Biotite and Plagioclase Ages of the Gneeisses from Gyeonggi Massif (경기육괴 편마암의 흑운모와 사장석 $^{40}Ar-^{39}39/Ar$ 연대)

  • 박계헌;송용선
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.152-160
    • /
    • 2004
  • $^{40}Ar-^{39}39/Ar$ ages were determined from the biotites and plagioclases separated from the Precambrian gneisses of Gyeonggi Massif. Biotites yield $1,294{\pm}46,\;1,241{\pm}39\;and\;1,217{\pm}39Ma(2{\sigma}\;errors)$, and plagioclases yield $934{\pm}25,\;872{\pm}19,\;819{\pm}15(2{\sigma})Ma$. These ages are significantly different from the U-Pb zircon ages obtained from the identical samples ($1,613{\pm}51~2,168{\pm}24Ma(2{\sigma})$, Song et al., 2001). The ages of biotites and plagioclases can be interpreted to represent independent regional thermal events. The Mesoproterozoic ages recorded by the biotites can be interpreted as a consequence of regional metamorphism followed by differential uplift. We propose that plagioclases record Neoproterozoic ages which are related with igneous activities under the regional extensional regime, related with the breakup of the supercontinent Rodinia existed at that time.

Pb Isotopic Composition of the Ore Deposits Distributed in Jeonbuk Province (전북 광상의 납 동위원소 조성에 대한 고찰)

  • Chung Jae-Il;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.81-89
    • /
    • 2006
  • Pb isotopic compositions were determined from the ore deposits of Beonam, Dongjin, Jeoksang and Bukchang mines distributed within Jeolabuk-do. As a result, individual mine shows significantly different values of Pb isotopic compositions from each other. Pb isotopic values of the Beonam, Bukchang and Dongjin mines altogether from linear variation, but it is too steep to represent their formation age. Instead, such trend suggests that these ore leads were originated from binary mixing. Precambrian basement rocks and Mesozoic granitoids are suggested for such two end-members. The relative contribution of lead from each source seems to be quite different for each ore deposit, implying that the circulation of the ore-forming fluid was very localized when they were formed. In the case of Dongjin mine it seems significant portion of the ore leads were originated from the basement rocks, which suggests that related igneous rock seems to have acted as heat source to generate circulation of the fluid rather than the source of the ore-forming elements.

Precambrian Kyeonggin gneiss complex (선캠브리아 경기육괴 중 대리암의 연대측정에 대한 예비연구)

  • 박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.130-138
    • /
    • 1993
  • Kyeonggi Gneiss complex forming Korean Precambrian basement is mainly composed of high-grade metasedimentary rocks, which are generally difficult to determine their absolute ages. We examined the feasibility of successive absolute age determination method for the marbles from this basement. We used hydrochloric acid for the selective dissolution of carbonate minerals from the marbles. Trace element analysis shows that most of Zr and Rb are concentrated in the residues. U in the residue is more abundant than that in HC1-dissolved parts. Pb, Sr, Sm, and Nd are somewhat evenly distributed between HC1-dissolved parts and the residues. }Th shows rather complex behavior. Sr isotopic compositions of the HC1-dissolved parts reveal mixing with Sr from non-carbonate minerals having much higher $^{87}Sr/^{86}Sr$ ratios. We suggest that the most reliable method in the age determination for the marbles of this area is measuring Pb isotopic ratios of the pieces of pure marbles.

  • PDF

The Study of Age Determination Using Stepwise Dissolution Technique (단계적 용해에 의한 연대측정법 연구)

  • 박계헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.133-147
    • /
    • 2001
  • Recently developing method of age determination using stepwise dissolution technique to expand the applicability of absolute age determination significantly is evaluated whether it is applicable to the Korean samples. The materials selected for the study are uranium-bearing black slates from Changni Formation of Ogcheon metamorphic belt, tourmaline separated from Naedeongni granite of Yeongnam massif, garnet and ilmenite separated from ilmenite-bearing anorthositic rock of Yeongnam massif, scheelites from Ogbang mine, and magnetite separated from Gyemyeongsan Formation of Ogcheon metamorphic belt. For the stepwise dissolution, various acid steps with different normalities and different durations were applied to leach the samples. The leachate from each step was analyzed to determine the Pb isotopic composition and concentrations of Pb and U using thermal ionization mass spectrometer. The black slates from the Changni Formation and the tourmaline from the Naedeongni granite reveal significant variation of Pb isotopic composition, which reveals the potential of such stepwise dissolution technique as a dating method. The behaviors of uranium and lead during the each stage of step leaching are different, which seem to reflect the differences in positions within the crystal lattices depending upon mineral species.

  • PDF

Petrological and geochemical study of the Precambrian granitic gneiss in the Danyang- Yecheon area (단양-예천사이에 분포하는 선캠브리아 화강암질 편마암류의 암석학적 및 지구화학적 연구)

  • Yun Hyon Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.34-41
    • /
    • 1992
  • The Precambrian granitic gneisses are widely distributed in the Danyang-Yecheon area, eastern part of Korea, where the Ryeongnam massif borders the Ogcheon fold belt. They are composed of migmatitic, biotite granitic, garnet-bearing and granoblastic granitic gneisses. The common joint sets of the granitic gneiss are NE and NS directions, which are probably related to the effects of Daebo orogeny and Bulgugsa disturbance, respectively. Mineral assemblages of the banded gneiss xenolith in the garnet-bearing granitic gneiss are quartz-plagioc1ase-biotite-mus-covite-orthoclase and quartz-plagioc1ase-biotite-garnet, belonging to the amphibolite facies. The granoblastic granitic gneiss is felsic, metaluminous, and granitic, and shows subalkaline trend. The garnet-biotite geothermometry of garnet-bearing granitic gneiss yields 640$^{\circ}$-708$^{\circ}C$ at pressure of 4 kb.

  • PDF

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.

Study on Geological Distribution of Fluorine in Forest Aggregate within Korea (산림골재 내 불소의 지질학적 분포 연구)

  • Yeong-Il Jeong;Kun-Ki Kim;Soon-Oh Kim;Sang-Woo Lee;Jin-Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.233-241
    • /
    • 2024
  • This study was conducted to investigate the geological distribution characteristics of fluorine in rocks, which can be a major resource of forest aggregates in Korea. Samples of forest aggregates were collected from 224 sites in 22 cities and counties for this study. The national background concentration was 344 mg/kg, which was significantly lower than the average fluorine concentration of crustal, which was 625 mg/kg, and slightly higher than the average fluorine concentration of world soil, which was 321 mg/kg. In terms of region and tectonic structure, fluorine concentrations were investigated to be highest in Gyeonggi-do(394 mg/kg) and Gyeonggi massif(396 mg/kg), respectively. The concentration distribution by the origin of the parent rock was in the order of metamorphic rock(362 mg/kg) > sedimentary rock(354 mg/kg) > igneous rock(328 mg/kg), and the concentration distribution by geologic ages was the highest in the Paleozoic at 394 mg/kg. The concentration distribution by rock types was in the order of diorite(515 mg/kg) > gneisses(377 mg/kg) > schists(344 mg/kg) > phyllite(306 mg/kg) > granites(305 mg/kg) > quartz porphyry(298 mg/kg). Consequently, it is speculated that gneisses and schists, Precambrian metamorphic rocks in the Gyeonggi massif that forms the crust of Gyeonggi-do, contain high fluorine concentrations.

Mesothermal Gold Mineralization in the Boseong-Jangheung area, Chollanamdo-province (전라남도 보성-장흥지역의 중열수 금광화작용)

  • 허철호;윤성택;소칠섭
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.379-393
    • /
    • 2002
  • Within the Boseong-Jangheung area of Korea, five hydrothermal gold (-silver) quartz vein deposits occur. They have the characteristic features as follows: the relatively gold-rich nature of e1ectrurns; the absence of Ag-Sb( -As) sulfosalt mineral; the massive and simple mineralogy of veins. They suggest that gold mineralization in this area is correlated with late Jurassic to Early Cretaceous, mesothermal-type gold deposits in Korea. Fluid inclusion data show that fluid inclusions in stage I quartz of the mine area homogenize over a wide temperature range of 200$^{\circ}$ to 460$^{\circ}$C with salinities of 0.0 to 13.8 equiv. wt. % NaCI. The homogenization temperature of fluid inclusions in stage II calcite of the mine area ranges from 150$^{\circ}$ to 254$^{\circ}$C with salinities of 1.2 to 7.9 equiv. wt. % NaCI. This indicates a cooling of the hydrothermal fluid with time towards the waning of hydrothermal activity. Evidence of fluid boiling including CO2 effervescence indicates that pressures during entrapment of auriferous fluids in this area range up to 770 bars. Calculated sulfur isotope composition of auriferous fluids in this mine area (${\delta}^34S$_{{\Sigma}S}$$\textperthousand$) indicates an igneous source of sulfur in auriferous hydrothermal fluids. Within the Sobaegsan Massif, two representative mesothermal-type gold mine areas (Youngdong and Boseong-Jangheung areas) occur. The ${\delta}^34S values of sulfide minerals from Youngdong area range from -6.6 to 2.3$\textperthousand$ (average=-1.4$\textperthousand$, N=66), and those from BoseongJangheung area range from -0.7 to 3.6$\textperthousand$ (average=1.6$\textperthousand$, N=39). These i)34S values of both areas are comparatively lower than those of most Korean metallic ore deposits (3 to 7TEX>$\textperthousand$). And, within the Sobaegsan Massif, the ${\delta}^34S values of Youngdong area are lower than those of Boseong-Jangheung area. It is inferred that the difference of ${\delta}^34S values within the Sobaegsan Massif can be caused by either of the following mechanisms: (1) the presence of at least two distinct reservoirs (both igneous, with ${\delta}^34S values of < -6 $\textperthousand$ and 2$\pm$2 %0) for Jurassic mesothermal-type gold deposits in both areas; (2) different degrees of the mixing (assimilation) of 32S-enriched sulfur (possibly sulfur in Precambrian pelitic basement rocks) during the generation and/or subsequent ascent of magma; and/or (3) different degrees of the oxidation of an H2S-rich, magmatically derived sulfur source ${\delta}^34S = 2$\pm$2$\textperthousand$) during the ascent to mineralization sites. According to the observed differences in ore mineralogy (especially, iron-bearing ore minerals) and fluid inclusions of quartz from the mesothermal-type deposits in both areas, we conclude that pyrrhotite-rich, mesothermal-type deposits in the Youngdong area formed from higher temperatures and more reducing fluids than did pyrite(-arsenopyrite)-rich mesothermal-type deposits in the Boseong-Jangheung area. Therefore, we prefer the third mechanism than others because the ${\delta}^34S values of the Precambrian gneisses and Paleozoic sedimentary rocks occurring in both areas were not known to the present. In future, in order to elucidate the provenance of ore sulfur more systematically, we need to determine ${\delta}^34S values of the Precambrian metamorphic rocks and Paleozoic sedimentary rocks consisting the basement of the Korean Peninsula including the Sobaegsan Massif.

SHRIMP U-Pb Zircon Ages of the Metapsammite in the Yeongam-Gangjin Area (영암-강진 일원 변성사질암의 SHRIMP U-Pb 저어콘 연대)

  • Kim, Dong-Yeon;Choi, Sung-Ja;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.287-299
    • /
    • 2015
  • The metapsammite distributed in the Yeongam-Gangjin area had been classified into age-unknown Yongamsan Formation, Seologri Formation and age-unknown Seogisan Formation, and these formations are reported as each other different formations. These formations have been renamed Precambrian Galdu or Permian Songjong Formations. In this study, we present detrital zircon SHRIMP U-Pb age data from the metapsammite to examine deposition time and stratigraphy. The analyzed U-Pb zircon ages dominantly reveal Paleoproterozoic ages of ca. 1.87Ga and the youngest detrital grains are constrained by the age of 246-265 Ma. The youngest age indicates late Permian or early Triassic for the deposition time. Therefore, the metapsammite in the Yeongam-Gangjin area is considered to be the upper formation of the late Paleozoic Pyeongan Group which is correlated with the Gohan-Donggo Formations or Nokam Formation of the Samcheock coal field and the Cheonunsan Formation of the Hwasun coal field. The metapsammite of the study area is the late Paleozoic Pyeongan Group by the zircon age rather than Precambrian Galdu and Permian Songjeong Formations are no longer meaningful. Therefore, we propose the upper Paleozoic 'metapelite' and 'metaspammite', or original formation name defined by 1:50,000 geological maps, instead of Galdu and Songjeong Formations.