The basement rock of upper stream of Keum River Valley consists of Precambrian gneiss which is resistant to weathering. That of mid and lower stream valley, however, is mainly composed of Mesozoic granites which are vulnerable to weathering. The upstream part of Geum River Basin is typified by the deeply-incised and steep meandering streams, whereas mid and lower part is characterized by wide floodplain and gently dipping river bottom toward the Yellow Sea. In particular flooding deposits, in which are imprinted a number of repetitions of erosion and sedimentation during the Holocene, are widely distributed in the lower stream of Geum River Basin. For understanding of erosions in the mid and lower stream of Geum River Basin, the rate of erosion of each small basins were estimated by using the data of field survey, erosional experiments and GIS ananlysis. It was revealed that erosion rate appeared highest in granite areas, and overall areas, in this field survey were represented by relatively high erosion rates. By implemeatation of remote sensing and imagery data, the temporal changes of river bed sediments for about last 11 years were successfully monitored. Observed as an important phenomenon is that the river bed has been risen since 1994 when an embankment (Dyke) was constructed in the estuarine river mouth. From the results derived from the detailed river bed topographical map made in this investigation, the sedimentation of the lower river basin is considered to be deposited with about 5 cm/year for the last 11 years. Based on this river bed profile analysis by HEC-6 module, it is predicted that Geum River bed of Ganggyeong area is continuously rising up in general until 2004. Although extraction of a large amount of aggregates from Gongju to Ganggyung areas, the Ganggyung lower stream shows the distinct sedimentation. Therefore, it is interpreted that the active erosions of tributary basins Geum drainage basins can affect general river bed rising changes of Geum River.
The Taebaegsan region and its vicinities mainly consist of Precambrian granitic gneisses and Cambrian meta-sedimentary rocks. And lots of leucocratic(alkali) granites smaller than the stocks are found here and there. Therefore the presence of leuco-granites is not properly described yet in the former studies. For the effective distinction of several granitic rocks, outcrop characteristics, mineral identification, and petro-chemical properties were studied. Some part of granitc gneisses could be classified into typical metamorphic rocks such as migmatites and banded gneisses. And some shows rather dark appearance with gray quartz and feldspars, and others two mica granites, leucocratic ones etc. But all of leucocratic granites of the region usually show bright milky white to beige color. Since they mainly consist of quartz, feldspars, muscovite, and small amounts of sericites, amphiboles, tourmaline and lepidolite. And all of alkali granites belong to the calc-alkalic, peraluminous and S-type in character. During magmatic differentiation of leucocratic granites, CaO and total Fe contents are clearly decreased than those of the older granitic rocks. On the other hand, magmatic evolution also had induced the greisenization and albitization which enriched the relative amounts of alkali elements such as $K_2O$ and $Na_2O$.
The $CO_2$-rich springs in the Kyungpook Province has been found at 16 locations. Most of the $CO_2$-rich springs outflow along either fault zones or the geologic boundary between Mesozoic granites and their adjacent rocks. The $CO_2$-rich water samples show a high $CO_2$ concentration ( $P_{CO2}0.46 to 5.21 atm), weak acidic pHs, wide electrical conductivity values ranging from 422 to 2,280 $\mu\textrm{S}$/cm, and high re content. They are classified into the ca-HC $O_3$ type in chemical composition.$\delta$$^{18}$ O and $\delta$$^2$H data indicate that $CO_2$-rich water is meteoric origin. The $\delta$$^{13}$ C values (-1.5$\textperthousand$ to -6.1$\textperthousand$ PDB) suggest that dissolved $H_2$C $O_3$$^{0}$ C $O_3$- are mainly derived from a deep-seated $CO_2$ and carbonate minerals. The thermodynamic equilibrium state between $CO_2$-rich water and major minerals, and hydrochemical characteristics indicate that major source minerals determining the chemical composition of $CO_2$-rich water are carbonate minerals, plagioclase, K-feldspar and Fe-oxides. Under high $CO_2$ pressure and the weak acidic condition, most of the $CO_2$-rich water samples are thermodynamically in the dissolution state with respect to albite and carbonate minerals.
The Au-Ag deposit of the Oknam mine occurs as gold-silver-bearing rhodochrosite veins in biotite schist and phyllite of the Precambriam Yulri Group. Five stages of ore deposition are recognized, each showing a definite mineral assemblage. General mineral parageneses in veins (stage III) associated with gold and silver vary inwardly from the vein margin: arsenopyrite + pyrite $\Rightarrow$ sphalerite+chalcopyrite+galena+gold $\Rightarrow$ ga1ena+Ag-bearing minerals. Fluid inclusion data indicate that temperature and salinity of ore fluids overally decreased with time: $345^{\circ}{\sim}240^{\circ}C$ and 3.4~7.8 wt. % NaCl equiv during stage I (quartz vein mineralization), $313^{\circ}{\sim}207^{\circ}C$ and 2.3~8.7 wt.% NaCl equiv during manganese-bearing carbonate stages (II and III), and $328^{\circ}{\sim}213^{\circ}C$ and 3.6-5.4 wt.% NaCl equiv during stage IV (quartz vein mineralization). The ore fluids probably evolved through repeated pulses of boiling and later mixing with cooler and more dilute meteoric waters. Fluid inclusion data and geologic arguments indicate that pressures during the mineralization were in the range of 90 to 340 bars. Gold occurs as silver-rich electrums (21 to 29 atom. % Au) and was deposited at temperatures between $300^{\circ}$ and $240^{\circ}C$. Thermochemical calculations suggest that gold was deposited as a combined result of increase in pH and decreases in temperature, $fs_2$ and $fo_2$.
The Okbang amphibolites occurring as sill-shaped bodies within the Precambrian Wonnam Group have been studied in terms of geochemical characteristics for their tectonomagmatic environments. The amphibolites fall in the ortho-amphibolite fields in Ni and Cr versus Cu diagrams. They belong to subalkaline and tholeiitic series in total alkali versus silica and ternary AFM diagrams, respectively. They show the compositional variation corresponding to the differentiation trend of tholeiitic suites. In discrimination diagrams using high-field-strength elements such as Ti, Zr, Nb and Y, the amphibolites show geochemical affinities to both of volcanic-arc tholeiites and normal (depleted) mid-oceanic ridge tholeiites. The REE patterns of the amphibolites are nearly flat and extremely similar to those of back-arc tholeiites. $(La/Yb)_{CN}$ ratios vary from 0.89 to 2.02 with an average value of 1.23. Such low light-REE abundances in the amphibolites suggest that they were derived from the upper mantle source depleted in these elements. In view of geochemical characteristics showing strong enrichments of incompatible elements such as K and Rb, distinctive negative Nb anomalies, depletions of light-REE observed also in normal (depleted) mid-oceanic ridge tholeiites, and unfractionated immobile elements such as Y and Yb, the tholeiitic magmas, from which the parent rocks of the amphibolites were formed, would be generated from a depleted upper mantle source and contaminated by continental crustal materials en route to surface. Tectonomagmatic environment for the amphibolites can be assumed to be continental back-arc basin.
Here we discuss a geochemical characterisitc of rare earth element (REE) pattern of a Precambrain leucogranitic gneiss at Imweon, Gangwon Province, Korea. The outcrop includes biotite gneiss xenolith. The leucocratic granite gneiss contacting with biotite gneiss is pegmatitic. However, there is no evidence of contact metamorphism between biotite gneiss and leucocratic-pegmatitic granite gneiss. The leucocratic granite gneiss shows a specific phenomenon of M-type (convex curved) tetrad effect in chondrite-normalized REE patterns with large negative Eu anomaly. The degree of REE tetrad effect in the leucocratic-pegmatitic granitec gneiss is weak and shows partly W-type (concave curved) tetrad effect. The Eu anomaly of leucocratic granite gneiss has close relationship with the degree of tetrad effect as well as Ca/Sr ratio. Our results suggest that the REE tetrad effect from the leucocratic granite gneiss should be formed during differentiation process of granitic magma. We also confirmed that the weathering might affect Eu or Ce anomaly rather than the formation of REE tetrad effect in granitic rock.
We determined SHRIMP U-Pb ages of the detrital zircons separated from the Bangnim Group of the Pyeongchang area to constrain its depositional age. As the result, the minimum age group yielded $^{206}Pb/^{238}U$ age of $450.3{\pm}4.2Ma$ (n=3), suggesting depositional age younger than Late Ordovician. Therefore, the Bangnim Group cannot be a Precambrian sedimentary formation but is younger than Myobong Formation of the Early Paleozoic Joseon Supergroup of the Taebaeksan basin. Such a depositional age implies that the Bangnim Group and structurally overlying Jangsan Quartzite should be in fault contact, suggesting that the Jangsan Quartzite, Myobong Formation and Pungchon Limestone thrusted over the Bangnim Group. The zircon U-Pb age distribution pattern of the Bangnim Group resembles those of the Early Paleozoic Myobong and Sambangsan Formations of the Taebaeksan basin and seemingly Middle Paleozoic Daehyangsan Quartzite and the Taean Formation. However, detrital zircon U-Pb age patterns of the Late Paleozoic Pyeongan Supergroup are quite distinct from them, suggesting drastic change in provenance of the detrital zircon supply. Therefore, we suggest that the Bangnim Group was deposited before the Pyeongan Supergroup.
A high-resolution seismic profile acquired across the northeastern boundary of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures across the basin boundary. We identified boundary faults and unconformity surfaces of the basin and divided sediment body into three seismic depositional units (Units I, II, and III from youngest to oldest). Inferred from fault geometry and type, northeastern part of the Pungam Basin has been formed by a strike-slip fault whereas the normal faults near the boundary were formed by transtensional movement along a fault zone. A 350-400 m thick sediment layer is overlying the Precambrian gneiss. Bedding planes of Unit III are dipping westward and are closely related to an anticline in the acoustic basement. Unit II is also tilted westward, suggesting that the eastern part of the fault zone was uplifted after deposition of lower part of the sedimentary body. Afterward, the uplifted sediment layers were eroded and transported to the western part of the basin. Chaotic reflection pattern of sedimentary Units II and III may suggest that strike-slip movement along the fault zone deformed basin-filled sediments.
그라우팅은 지반의 공학적인 강도증가를 통한 지지력 향상 및 암반의 투수성 저감을 통해 지하수 유동을 억제하기 위하여 대규모 토목공사 현장의 균열암반 및 댐 또는 제방 등의 지역에서 많이 시행되고 있다. 본 연구는 균열암반지역에서 그라우팅 효과 확인을 위하여 보통 포틀랜드 시멘트(OPC)와 마이크로 시멘트(MC)를 사용하여 그라우팅을 수행하였으며, 그라우팅 전후에 물리검층(시추공영상촬영, 초음파 텔레뷰어검층)을 이용하여 그라우팅 효과 정도를 파악하였다. 연구지역은 경상북도 영주시 평은면 지역으로, 지질은 선캠브리아기 안구상편마암에 시대미상의 흑운모 화강암이 관입을 하였고, 이를 제4기의 충적층이 부정합으로 피복되어 있다. 그라우팅은 일반구간과 단층대구간으로 구분하여 실시하였으며, 두 구간의 이격거리는 서로의 간섭을 피하기 위해 약 40m 간격으로 선정하였다. 주입재(OPC, MC)는 5개의 주입공에서 triangle 방향으로 주입하였으며, 주입정도를 확인하기 위하여 각 구간에 2공씩 확인시추를 하였다. 두 개의 site중 일반구간의 보통 포틀랜드시멘트 주입결과 평균주입량은 48.2kg/공이며 주입 1m당으로 환산하면 Lugeon값 10미만의 지층에서는 1.62kg/m이며, 마이크로시멘트의 평균주입량은 49.6kg/공이며 주입 1m당으로 환산하면 Lugeon값 10미만의 지층에서는 3.86kg/m로 나타났다. 단층대 구간에서는 보통 포틀랜드시멘트의 평균주입량이 40.0kg/공이며, 1m당으로 환산하면 Lugeon값 10미만의 지층에서는 2.75kg/m이며, 마이크로 시멘트는 평균주입량이 56.5kg/공, 주입 1m당으로 환산하면 Lugeon값 10미만의 지층에서는 3.15kg/m로 나타났다. 마이크로시멘트의 주입압은 보통 포틀랜드시멘트에 비해 상대적으로 낮았으며, 그라우팅 개선효과 역시 상대적으로 양호한 것으로 나타났다. 그라우팅 효과확인을 위한 물리검층의 초음파텔레뷰어 해석결과 상대암반강도는 주입전 $250{\sim}750\;kgf/cm^2$, 주입후는 $400{\sim}800\;kgf/cm^2$으로 그라우팅에 의한 암반강도의 상승을 확인할 수 있었고, 시추공영상촬영 분석에서는 시추코어만으로 얻기 힘든 시멘트 충진구간을 직접 확인할 수 있었다. 초음파텔레뷰어의 경우 파쇄대의 분포 및 암반강도 측정을 통한 그라우팅 파악은 가능하였으나 파쇄대 충진물을 확인할 수가 없는 단점이 있었고 이를 시추공영상촬영을 통해 보완할 수 있었다. 다만 물리검층의 경우 그라우팅에 의한 공의 손실로 동일공에 의한 반복 조사가 아닌 경우가 대부분이어서 그라우팅 효과에 대한 정확한 비교가 어려웠으며 추후 이를 보완하기 위한 계속적인 연구가 필요할 것으로 사료된다.
Jiri Mountain lies in the southwestern portion of the Yeongnam massif, which is one of the Precambrian basement massifs of the Korean Peninsular, consisting essentially of high-grade metamorphic rocks. The geology of the area mainly consists of Paleoproterozoic metasedimentary migmatitic gneisses, granitic gneisses which are classified into granitic gneiss, (K-feldspar porphyroblastic) granitic gneiss and quartzo-feldspathic gneiss, charnockite and anorthosite based on their occurrence and petrographic characteristics. The ages obtained from these rocks mainly span a narrow range between ca. 1,876 and 1,856 Ma although inherited cores of zircons from massive granite gneiss yielded much older age spectrum (>2,029 Ma). The age of major metamorphism is ca. 1850-1840 Ma and the metamorphic condition obtained from mineral assemblages and geothermobarometers is about 4-6 kb and up to $700-750^{\circ}C$. These results indicate that in the area intense granitic magmatism and metamorphism occurred in the deep crust during Paleoproterozoic orogeny. Some younger age of charnockite (1,856-1,865 Ma) and anorthosite (1,861-1,862 Ma) might indicate the beginning of intraplate rifting leading to felsic and mafic magmatism just after the orogeny. In conclusion, the rocks in the Jiri Mountain area which formed at a mid to deep crustal zone provide us windows into the deep crust.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.