Browse > Article

Geochemical Implication of Rare Earth Element Tetrad Effect from a Leucocratic Granite Gneiss in the Imweon Area, Gangwon Province, Korea  

Lee, Seung-Gu (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
Kim, Kun-Han (Geological and Environmental Hazard Division, Korea Institute of Geoscience and Mineral Resources)
Song, Yong-Sun (Department of Environmental Geosciences, Pukyoung National University)
Kim, Nam-Hoon (Department of Environmental Geosciences, Pukyoung National University)
Park, Kye-Hun (Department of Environmental Geosciences, Pukyoung National University)
Publication Information
The Journal of the Petrological Society of Korea / v.16, no.1, 2007 , pp. 27-37 More about this Journal
Abstract
Here we discuss a geochemical characterisitc of rare earth element (REE) pattern of a Precambrain leucogranitic gneiss at Imweon, Gangwon Province, Korea. The outcrop includes biotite gneiss xenolith. The leucocratic granite gneiss contacting with biotite gneiss is pegmatitic. However, there is no evidence of contact metamorphism between biotite gneiss and leucocratic-pegmatitic granite gneiss. The leucocratic granite gneiss shows a specific phenomenon of M-type (convex curved) tetrad effect in chondrite-normalized REE patterns with large negative Eu anomaly. The degree of REE tetrad effect in the leucocratic-pegmatitic granitec gneiss is weak and shows partly W-type (concave curved) tetrad effect. The Eu anomaly of leucocratic granite gneiss has close relationship with the degree of tetrad effect as well as Ca/Sr ratio. Our results suggest that the REE tetrad effect from the leucocratic granite gneiss should be formed during differentiation process of granitic magma. We also confirmed that the weathering might affect Eu or Ce anomaly rather than the formation of REE tetrad effect in granitic rock.
Keywords
Rare earth element; Tetrad effect; Leucocratic granite gneiss; Eu anomaly; Imweon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Irber, W, 1999, The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta, 63, 489-508   DOI   ScienceOn
2 Johannesson, K.H., Stetzenbach, K.J., Hodge, Y.F. and Lyons, W.B., 1996, Rare earth element complexation behaviour in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth Planet. Sci. Lett., 139, 305-319   DOI   ScienceOn
3 Lee, S.G, Lee, D. H., Kim, Y., Chae, B.G., Kim, W.Y. and Woo, N.C., 2003, Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fractured-filling calcite. Appl. Geochem., 18, 135-143   DOI   ScienceOn
4 Lee, S.G, Kim, Y., Chae, B.G., Koh, D.C. and Kim, K.H., 2004, The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Appl. Geochem., vol. 19, 1711-1725   DOI   ScienceOn
5 Masuda, A, Nakamura, N. and Tanaka, T., 1973, Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta, 37, 239-248   DOI   ScienceOn
6 Masuda, A, Kawakami, O., Dohmoto, Y. and Takenaka, T., 1987, Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochem. J., 21, 119-124   DOI
7 McLennan, S.M., 1994, Rare earth element geochemistry and the 'tetrad' effect. Geochim. Cosmochim. Acta, 58, 2025-2033   DOI   ScienceOn
8 Taylor, S.R. and McLennan, S.M., 1985, The continental crust: Its composition and evolution. Geoscience Texts, Blackwell, Oxford, 312 p
9 고상모, 황덕환, 김수영, 이동진, 김대엽, 이한영, 김용욱, 김영인, 윤현수, 백상호, 이춘오, 2001, 국내광물자원 자료 전산화 및 광상재평가 종합시스템 개발연구, 한국지질자원연구원 보고서 2000-R-T102-P-03, 90 p
10 Masuda, A., 1975, Abundances of mono isotopic REE, consistent with the Leedey chondritic values. Geochem. J., 9, 183-184   DOI
11 Minami, M., Masuda, A., Takahashi, K. Mamoru, A. and Shimizu, H., 1998, Y-Ho fractionation and tetrad effect observed in cherts. Geochem. J., 32, 405-419   DOI   ScienceOn
12 Lee, S.G., Masuda, A. and Kim, H.S., 1994, An early Proterozoic leuco-granitic gneiss with the REE tetrad phenomenon. Chem. Geol., 114, 59-67   DOI   ScienceOn
13 Monecke, T., Kempe, U., Monecke, J., Sala, M. and Wolf, D., 2002, Tetrad effect in rare earth element distribution patterns: A method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta, 66, 1185-1196   DOI   ScienceOn
14 Johannesson, K.H., Lyons, W.B., Stetzenbach, K.J. and Bryne, R.H., 1995, The solubility control of rare earth elements in natural terrestrial waters and the significance of $PO_{4}^{3-}$ and $CO_3^{2-}$ in limiting dissolved rare earth element concentrations: A review of recent information. Aqua. Geochem., 1, 157-173   DOI
15 Lipin, B.R. and McKay, G.A., 1989, Geochemistry and Mineralogy of Rare Earth Elements. The Mineralogical Society of America, 348 p
16 Takahashi, Y., Yoshida, H., Sato, N., Hama, K., Yusa, Y. and Shimizu, H., 2002, W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposits, central Japan. Chem. Geol., 184, 311-335   DOI   ScienceOn
17 이승구, 성낙훈, 김용제, 增田彰正, 2001, 동위원소희석법을 이용한 열이온 질량분석 : 희토류원소 지구화학에의 응용. 암석학회지, 10, 190-201
18 Monecke, T., Dulski, P. and Kempe, U., 2007, Origin of convex tetrads in rare earth element distribution patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn- W deposit, Zermany. Geochim. Cosmochim. Acta, 71, 335-353   DOI   ScienceOn
19 Veksler, I.V, Dorfman, A.M., Kamenetsky, M., Dulski, P. and Dingwell, D.B.. 2005, Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim. Cosmochim. Acta, 69, 2847-2860   DOI   ScienceOn
20 Monecke, T., Kempe D. and Monecke J., 2003, Comment on the paper 'W- and M-type tetrad effects in REE patterns for water-rock systems in the Tono uranium deposit, central Japan' by Y. Takahasi, H. Yoshida, N. Sato, K. Hama, Y. Yusa and H. Shimizu. Chem. Geol., 202, 183-184   DOI   ScienceOn
21 Masuda, A and Akagi, T., 1989, Lanthanide tetrad effect observed in leucogranite from China. Geochem. J., 23, 245-253   DOI
22 Yurimoto, R., Duke, E.F., Papike, J.J. and Shearer, C.K., 1990, Are discontinuous chondrite-norrnalized REE patterns in pegmatititic granite systems the results of monazite fractionation. Geochim. Cosmochim. Acta, 54, 2141-2145   DOI   ScienceOn
23 Dia, A., Gruau, G, Olivie-Lauquet, G, Riou, C., Molenat J. and Curmi, P., 2000, The distribution of rare earth elements in groundwaters: Assessing the role of source-rock composition, redox changes and colloidal particles. Geochim. Cosmochim. Acta, 64, 4131-415l   DOI   ScienceOn
24 Bau, M., 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol., 123, 323-333   DOI
25 Jahn, B.-m., Wu, F., Capdevila, R., Martineau, F., Zhao, Z. and Wang, Y., 2001, Highly evolved juvenile granites with tetrad REE patterns: the Wuduhe and Baderzhe granites from the Great Xing'an Mountains in NE China. Lithos, 59, 171-198   DOI   ScienceOn
26 Kawabe, I., Kitahara, Y. and Naito, K., 1991, Non-chondritic Yttrium/Holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones. Geochem. 1., 25, 31-44
27 Johannesson, K.H., Stetzenbach, K.J. and Hodge, V.F., 1997, Rare earth elements as geochemical tracers of regional groundwater mixing. Geochim. Cosmochim. Acta, 61, 3605-3618, 1997   DOI   ScienceOn