• Title/Summary/Keyword: 선체 저항

Search Result 137, Processing Time 0.033 seconds

A Study on the Wave Resistance and the Side-hull Location of a 2,500 Ton Class Trimaran (2,500톤급 삼동선의 보조선체위치와 조파저항에 대한 연구)

  • Kang Kuk-Jin;Kim Do-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.66-71
    • /
    • 2001
  • 본 논문은 삼동선의 선형특성에 대한 간략한 소개와 삼동선의 주선체 좌우에 설치되는 보조 선체의 위치가 조파저항성능에 미치는 영향과 그 최적위치선정을 위한 연구 결과를 보인다. 조파저항 계산기법을 이용하여 보조선체의 길이방향과 횡방향의 위치 변화에 대한 조파저항을 계산하였으며, 그 유용성을 검증하기 위하여 모형시험결과와 함께 비교하였다 본 연구를 통하여 보조선체의 횡방향 위치가 삼동선의 조파저항성능에 미치는 영향은 작으나, 길이방향 위치는 그 성능에 커다란 영향을 미치는 것으로 나타났다. 그리고 주선체의 선수부에서 발생된 커다란 파도의 파저에 보조선체의 선수가 놓이는 것이 저항성능에 가장 유리하며, 선속이 빨라짐에 따라서 그 최적위치는 선미쪽으로 옮겨가는 경향을 보였다.

  • PDF

Powering Performance Characteristics of 2,5000 Ton Class Trimaran (2,5000톤급 삼동선의 저항추진특성)

  • Kuk-Jin Kang;Chun-Ju Lee;Do-Hyun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.14-22
    • /
    • 2001
  • This paper presents the results of hull form design and powering performance for a 2.500 ton class trimaran frigate. A series of resistance tests and numerical calculations have been conducted to figure out the influences of side-hull form and position on the resistance characteristics of the trimaran. And the propulsion test was conducted to investigate the propulsion efficiency of the trimaran, and the powering performance of the trimaran was compared with that of the similar mono-hull ships in full scale. From the research it was found that the longitudinal position of side-hull had a large influence on the resistance characteristics of the trimaran while the side-hull form and transverse position had a small influence on it. The trimaran showed favorable resistance performance when the side-hull was located near the stern of trimaran, which was resulted from the fact that the side-hull stem was located near the primary wave hollow generated by the main hul1. The powering performance of the trimaran was superior to that of the similar mono-hull ships above the middle speed range.

  • PDF

Estimation of Ship Resistance by Statistical Analysis and its Application to Hull Form Modification (통계해석에 의한 저항 추정 및 선형 개량)

  • S.W.,Hong;K.J.,Cho;D.S.,Yun;E.C.,Kim;W.C.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.28-38
    • /
    • 1988
  • This paper describes the statistical analysis method of predicting the ship resistance. The equation for the wavemaking resistance coefficient is derived as the principal dimensions and sectional area coefficients by using the wavemaking resistance theory and its regression coefficients are determined from the regression analysis of the resistance test results. The equation for the form factor is derived by purely regression analysis of the principal dimensions, sectional area coefficients and resistance test results. Also, it is shown that the wavemaking resistance can be minimize by varying the sectional area curve without changing the principal dimensions of the ship. This methods were applied to the resistance prediction of a bulk carrier. And the, the modified hull form with minimum wavemaking resistance was obtained and the reduction of effective power was confirmed by the resistance test.

  • PDF

2 Dimensional Flow Analysis according to the Submerged Body of Catamaran Leisure Ship (쌍동선형 레저선박의 몰수부 간격에 따른 2차원 유동해석)

  • Lee, Chang-Woo;Oh, Woo-Jun;Lee, Dong-Sup;Shan, Chang-Bae;Lee, Gyung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.241-242
    • /
    • 2009
  • There are marry ships and marine structures and also has marry differences on according to the shape and the interval of hulls to the purpose. the multi-submerged body needs appropriate distance between the hulls because of the optimum hull form. thus, through this paper, the flow characteristics behind the multi-submerged body according os the distance ration between the hulls and various angles of attack was conducted.

  • PDF

A Study on the Improvement of Fore-Body Shape Considering Breaking Wave Phenomena (쇄파현상을 고려한 선수형상개량법에 관한 연구)

  • K.J.,Kang;E.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.1-12
    • /
    • 1989
  • This paper presents a method of minimizing the wave resistance components, due to the linear wave propagating to the far field and the breaking wave in the vicinity of the hull. This method consists of the linear optimization method for the linear wave resistance and the statistical optimization method for the breaking wave resistance through the analysis of the experimental data. For the purpose of the application, a wall-sided model with parabolic waterplane shape was selected as a basic hull form, and two modified hull forms with varied $C_p-curve$ of the fore-body were derived from the linear wave optimization method and the empirical method. The correlation between the linear wave resistance and the breaking wave resistance according to the $C_p-curve$ variation of the fore-body was investigated through the experimental and analytical results for the three hull forms. The fore-body shape optimized by the present method shows the reduction of the wave resistance by 47% comparing to the basic hull form at the design speed($F_n=0.26$).

  • PDF

Calculation of Wave-making Resistance using Neumann-Kelvin Theory (Neumann-Kelvin 이론을 사용한 조파저항 계산)

  • S.J. Kim;S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.71-79
    • /
    • 1992
  • In order to obtain the wave-making resistance of a ship, so-called the Neumann-Kelvin problem is solved numerically. For computing the Havelock source, which is the Green's function of the problem, we adopted the methods given by Newman(1987) for the term representing the local disturbance, and Baar and Price(1988) for the wave disturbance, respectively. In the numerical code we developed, the source strength is assumed as bilinear on each panel and continuous throughout the hull surface. The wave-making resistance is calculated using the algorithm of de Sendagorta and erases(1988), which makes use of the wave amplitude far downstream. The Wigley hull was chosen for the sample calculation, and our results showed a good agreement with other existing experimental and numerical results.

  • PDF

A Study on the Hull Resistance Prediction Methods of Barge Ship for Towing Force Calculation of Disabled Ships (사고선박 예인력 계산을 위한 바지선의 선체 저항 성능 추정법 연구)

  • Kim, Eun-Chan;Choi, Hyuek-Jin;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.211-216
    • /
    • 2013
  • Most of hull resistance prediction methods which are used to calculate the towing force of disabled ships are very simple and old-fashioned. In particular, in cases of barge ships, a method similar to the US Navy Towing Manual is being used. This paper reviewed the US Navy Towing Manual and the notification method of Korea Ministry of Oceans and Fisheries and proved that these prediction methods are irrational and inaccurate. Furthermore, a new Modified-Yamagata-Barge method is introduced as a more rational and accurate resistance prediction method which can be applied in case of barge ships.

A Study on the Simplified Prediction Method of Air Resistance for Towing Force Calculation of Disabled Ships (사고선박 예인력 계산을 위한 공기저항 간편 추정법 연구)

  • Kim, Eun-Chan;Choi, Hyuek-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.198-204
    • /
    • 2014
  • Ships sailing the seas encounter air resistance. The air resistance depends on the shape of the above-water hull, the ship speed, the wind speed and wind direction. The experimental or statistical methods which are used to predict the air resistance are one of the essential procedures of the calculation of the towing force of the disabled ships. This paper shows simplified air resistance prediction method using the variables of the projected area of the above-water hull, the speed of the ship, the wind speed and its direction. These methods have been applied to the existing computer program which had been set up to predict the towing force of the disabled ships.

선체주위의 3차원 경계층 해석

  • 강신영
    • Journal of the KSME
    • /
    • v.22 no.5
    • /
    • pp.371-379
    • /
    • 1982
  • 선박저항의 일반적인 개요, 선체주위의 유동해석의 중요성, 해석의 어려움들을 소개하고, 선체 주위의 3차원 난류 경계층 해석의 계산예와 ITTC-SSPA워크\ulcorner의 결과로부터 이론의 현실을 할 수 있었다. 현재 미국, 일본, 구라파 등지에서 이 분야에 대한 연구가 집중되고 있으며, 많은 항공 및 기계분야에서 일하고 있는 학자들이 참여하고 있다. 따라서 본 강좌를 통해서 국내의 연구 자들이 관심을 가질 수 있는 계기가 되었으면 좋겠다.

  • PDF

실선의 선체저항 측정에 관한 연구

  • Jeong, Chang-Hyeon;Nam, Taek-Geun;Kim, Cheol-Seung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.17-19
    • /
    • 2014
  • 해양사고 발생 직후 2차적인 피해로의 확산을 방지하기 위한 조치로 사고선박을 안전한 장소로 이동하게 된다. 사고선박의 크기와 상태 그리고 해상조건을 고려하여 예선의 크기와 척수가 결정된다. 이 과정에서 사고선박의 선체저항을 계산하게 되는데, 기존의 이론식을 적용하여 계산하고 이에 대한 검증 단계로 예인실험을 실시하였다. 대상선박은 목포해양대학교 실습선 새유달호이며, 장력계, 외력 측정장치 등 실험장치는 실습선에 탑재하여 계측하였다. 실험장소는 목포해양대학교 인근 묘박지이며, 당시 풍속은 7m/s, 조류는 0.7m/s 전후이었으며, 횡방향 예인, 전방 2척 예인, 전 후방예인, 프로펠러고착, 예인속력의 변화 등 다양한 시나리오에 대하여 실험을 실시하였다. 장력의 계측은 예선의 예인삭을 사용하였으며, 실습선 선수미 비트에 장력계를 연결하여 측정하였고, 장력계의 최대측정 범위는 20톤을 사용하였다. 예인속력은 정지에서 3m/s까지 단계적으로 증가시키면서 해당 속력별 장력을 계측하여 속력증가에 따른 예인력을 확인하였다. 최종적으로 이론계산 결과와 실선실험 결과를 상호 비교하여 이론계산식의 유효성을 검증하였다.

  • PDF