• Title/Summary/Keyword: 선체 보강

Search Result 42, Processing Time 0.021 seconds

A Study on the Ultimate Strength Behavior according to Analysis Boundary at Stiffened Plate (선체보강판의 해석영역에 따른 최종강도거동에 관한 연구)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.262-269
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of analysis range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Crack Arrest Toughness of Thick Steel Plate Welds for Ship Building (선급 극후물 강재 용접부 취성균열 정지특성)

  • Park, Joon-Sik;Jung, Bo-Young;An, Gyu-Baek;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.9-14
    • /
    • 2007
  • 선박의 고강도화 및 극후물화가 진행됨에 따라 선체 구조물의 파괴 특성에 대한 관심이 높아지고 있으며, 최근 균열정지의 관점에서 취성균열 정지특성에 대한 연구가 활발히 이루어지고 있다. 기존의 연구결과에 따르면 65mmt 이상의 극후물 용접부에 대해서 취성균열 정지특성의 저하가 발생할 가능이 있다고 보고되고 있으며, 취성균열 정지특성이 우수한 강재의 개발 이외에 용접부 보강재의 부착, 보수 용접 실시 등 개선 방안을 마련하기 위한 다양한 연구가 진행되고 있다. 그러나 극후물 용접부 취성균열 전파기구에 관한 규명은 현재 전무한 실정이며, 강재 두께의 영향 이외에 용접 입열량 용접부 잔류응력 등의 효과가 복합적으로 검토되어야 한다. 아울러 극후물 용접부 균열정지 파괴인성의 평가, 대형파괴시험을 대체할 소형시험법의 개발 및 검증 등에 관한 연구가 요구된다.

Reliability Analysis of Ship′s Longitrdinal Strength for the Rational Ship Structural Design (선박구조설계 합리화를 위한 선체 종강도의 신뢰성 해석)

  • Oi-H. Kim;Byung-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The application of the reliability analysis is investigated as a probabilistic approach to the assessment of ship's structural strength and to the establishment of design format for longitudinal strength. Reliability analyses are carried out for 34 ships of tankers and bulk carriers built in HHI for some failure modes such as tensile yielding, compressive buckling and ultimate strength of hull girder. The safety assessment of each ship, the calculation of sensitivity factors and the derivation of target reliability index are performed. As results. the difference of reliability indices among ships is great for all modes. To provide more uniform levels of safety the establishment of new strength criteria using partial safety factors is performed. The partial safety factors for the design format are obtained according to the AFOSM method and the reliability-conditioned(RC) method. Finally, a design format using partial safety factors has been proposed. We could find out that new strength criteria can produce consistent reliability indices which are close to the target value.

  • PDF

Ultimate Strength Assessment of Ship Stiffened Panel under Arctic Conditions (극지환경을 고려한 선체보강판 구조의 최종강도 평가)

  • Kim, YangSeop;Park, DaeKyeom;Kim, SangJin;Lee, DongHun;Kim, BongJu;Ha, YeonChul;Seo, JungKan;Paik, JeomKee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.283-290
    • /
    • 2014
  • Environmental changes, especially global climate change, are creating new routes to reduce a shipping service distance in Arctic area. The Arctic routes are shorter than 60% of existing ways Panama or Suez canal). For this reason, ship owners prefer to navigate in Arctic area and a transportation of goods though the Arctic area is increasing. But the low temperature in Arctic condition changes the material properties. Especially, the material will be brittle and strength will increase. And an ultimate strength analysis of ship stiffened panels is changed depending on temperatures. In present study, the ultimate strength analysis of stiffened panels in double hull oil tankers is performed under various low temperatures with the material properties obtained by tensile coupon test. The analytical method as named ALPS/ULSAP was used for analysis method and 6 kinds of temperature (20, 0, -20, -40, -60 and $-80^{\circ}C$) were considered to investigate the effect of Arctic conditions.

A Study on the Retrofit measures for KDX-II KVLS Hull Crack (KDX-II급 함정 수직발사대 선체 균열발생에 따른 보강방안 연구)

  • Choi, Sang-Min;Choi, Jun-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.393-401
    • /
    • 2017
  • Purpose: The purpose of this study is to propose retrofit measures for KDX-II KVLS hull crack, also, enhance safety and quality of ship. Also, this study suggest to how to retrofit about hull crack of the ship and how to improve operability of the ship. Methods: Retrofit measures of KDX-II KVLS hull crack reach a conclusion through global structure analysis and fatigue analysis. Concerned about thermal deformation due to welding around the KVLS, in addition to, verify to safety of KVLS. Results: Based on result of global structure analysis establish retrofit measures for KDX-II KVLS hull crack. Additionally, through fatigue analysis establish final retrofit measures. The results of retrofit measures are allowed both stress level and fatigue life. Conclusion: Retrofit measures for ship hull crack based on global structure analysis and fatigue analysis improves operability and quality of the ship. Especially, KDX-II ship is the best battleship in our country. Considering the importance of KDX-II, this study improves both Korea navy's combat power and ability to carry out the mission.

Study for Structural Behavior of O. T. Bulkhead Due to Discontinued Vertical Stiffeners in COT (COT에서의 Vertical Stiffener 단락에 따른 O. T. Bulkhead 구조 거동에 대한 고찰)

  • Lee, Dae-Sung;Kim, Jung-Hee;Chung, Sang-Youl
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.21-24
    • /
    • 2011
  • Oil Tight Bulkhead (O. T. Bulkhead) is one of the most important structural members of oil tankers in the views of vessel's strength and safety. Therefore O.T. bulkhead's strength should be sufficient against relevant loadings, which is normally verified by local scantling requirement and structural strength analysis defined in CSR (Common Structure Rules for Double Hull Oil Tankers). However, there is a weak-able situation when the vertical stiffeners are cut due to the penetration of cargo pipes through O. T. Bulkhead. In addition, CSR does not define how to prove the strength of this case. Therefore it is necessary to verify the structural adequacy in case that several vertical stiffeners are discontinued. This article intends to prove the strength of O. T. Bulkhead with five (5) vertical stiffeners discontinued due to pipes' penetration using the grillage analysis and the finite element analysis and to provide proper reinforcement.

  • PDF

A Study on the Buckling Strength of Plate Panels with Opening (유공판의 좌굴강도에 관한 연구)

  • Kim, Ul-Nyeon;Choe, Ick-Heung;Kwon, Jin-Chil;Paik, Jeom-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.210-224
    • /
    • 2010
  • The aim of the present study is to investigate the buckling strength of plates and stiffened panels with opening under transverse thrust and shear actions. It is observed that the existing design formulation for critical-buckling strength of plates are not valid for perforated plates, because the current design formulation trends can significantly overestimate or underestimate the load-carrying capacity of plates when plates have large opening and/or are thick. A series of eigen value and elastic.plastic large deflection finite element analyses are carried out with varying the aspect ratio of plate, the opening size and location on plate until and after the ultimate strength is reached. Based on the results obtained from the present study, closed-form design formulations for the elastic buckling strength of plates and stiffened panels with opening are derived. The derived design formulations are considered plasticity correction of the material and verified by experimental tests and results of nonlinear finite element computations.

Numerical Analysis of Iceberg Impact Interaction with Ship Stiffened Plates Considering Low-temperature Characteristics of Steel (강재의 저온 특성을 고려한 선체 보강판과 빙하의 충격 상호 작용에 대한 수치 해석)

  • Nam, Woongshik
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.411-420
    • /
    • 2019
  • It is essential to design crashworthy marine structures for operations in Arctic regions, especially ice-covered waters, where the structures must have sufficient capacity to resist iceberg impact. In this study, a numerical analysis of a colliding accident between an iceberg and stiffened plates was carried out employing the commercial finite element code ABAQUS/Explicit. The ice material model developed by Liu et al. (2011) was implemented in the simulations, and its availability was verified by performing some numerical simulations. The influence of the ambient temperature on the structural resistance was evaluated while the local stress, plastic strain, and strain energy density in the structure members were addressed. The present study revealed the risk of fracture in terms of steel embrittlement induced by ambient temperature. As a result, the need to consider the possibility of brittle failure in a plate-stiffener junction during operations in Arctic regions is acknowledged. Further experimental work to understand the structural behavior in a plate-stiffener junction and HAZ is required.

Collapse Analysis of Ultimate Strength Considering the Heat Affected Zone of an Aluminum Stiffened Plate in a Catamaran (카타마란 알루미늄 보강판의 열영향부 효과를 고려한 최종강도 붕괴 해석)

  • Kim, Sung-Jun;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.542-550
    • /
    • 2020
  • The use of high-strength aluminum alloys for ships and of shore structures has many benefits compared to carbon steels. Recently, high-strength aluminum alloys have been widely used in onshore and of shore industries, and they are widely used for the side shell structures of special-purpose ships. Their use in box girders of bridge structures and in the topside of fixed platforms is also becoming more widespread. Use of aluminum material can reduce fuel consumption by reducing the weight of the composite material through a weight composition ratio of 1/3 compared to carbon steel. The characteristics of the stress strain relationship of an aluminum structure are quite different from those of a steel structure, because of the influence of the welding[process heat affected zone (HAZ). The HAZ of aluminum is much wider than that of steel owing to its higher heat conductivity. In this study, by considering the HAZ generated by metal insert gas (MIG) welding, the buckling and final strength characteristics of an aluminum reinforcing plate against longitudinal compression loads were analyzed. MIG welding reduces both the buckling and ultimate strength, and the energy dissipation rate after initial yielding is high in the range of the HAZ being 15 mm, and then the difference is small when HAZ being 25 mm or more. Therefore, it is important to review and analyze the influence of the HAZ to estimate the structural behavior of the stiffened plate to which the aluminum alloy material is applied.

A Study on Residual Strength Assessment of Damaged Oil Tanker by Smith Method (Smith법에 의한 손상 유조선의 잔류강도 평가 연구)

  • Ahn, Hyung-Joon;Baek, Deok-Pyo;Lee, Tak-Kee
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.823-827
    • /
    • 2011
  • The present Common Structural Rules for double hull oil tanker is not included the residual strength, which is one of the functional requirements in design part of Goal-based new ship construction standards (GBS). The GBS will be enforced after July 1, 2016. The requirement related residual strength has the goal to build safe ship even if she has the specified damages due to marine accidents including collision and grounding. In order to assess the residual strength based on risk for structural damages according to GBS, tons of nonlinear FE analysis work taking into account various types of damage will be needed. The Smith's method, a kind of simplified method for the strength analysis is very useful for this purpose. In this paper, the residual strength assessments based on ultimate strength using Smith's method were carried out. The objected ship is VLCC with stranding damage in bottom structures. Also, the results were compared with that of nonlinear FE analysis using three cargo hold model.