• Title/Summary/Keyword: 선체 구조 모델

Search Result 71, Processing Time 0.023 seconds

Estimation of buckling and collapse behaviour for continuous stiffened plate under combined transverse axial compression and lateral pressure (조합하중을 받는 연속보강판의 좌굴 및 붕괴거동 평가)

  • Park, Joo-Shin;Choi, Joung-Hwan;Hong, Kwan-Young;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Estimation of the buckling and ultimate strength of a continuous stiffened plate subjected to combined transverse compression and lateral pressure is of high importance to ensure the safety of ship structures, particularly for the bottom plating under a deep draft condition For example, bottom plating of bulk carriers is subjected to transverse thrust caused by the bending of double bottom structure and the direct action of pressure on the side shells. Most of experimental tests, theoretical approach and numerical researches have been performed on the buckling and ultimate strength behaviour of plates or stiffened plates under combined compression and lateral pressure. With regard to stiffened panels, however, most of studies have been concerned with the load conditions of combined longitudinal thrust and lateral pressure, while fewer studies have been performed for the combined transverse thrust and lateral pressure. In addition, the previous researches are mainly concerned with an isolated rectangular plate simply supported along the all edges, whereas actual ship plating is continuous across the transverse frames and heavy girders. In the present paper, a series of elastoplastic large deflection FEA on a continuous stiffened plate is performed and then clarify the characteristic of collapse mode and explain the effect of transverse compression.

A Study on the Design and Strength Evaluation of the Pipe Support Structure and Hull Reinforcement (파이프 지지구조와 하부 보강의 설계와 강도 평가에 관한 연구)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.187-199
    • /
    • 2019
  • In the case of gas carriers and oil tankers, pipes are installed on the upper deck as a moving passage to load LPG, LNG, crude oil, etc. Pipes used for loading or unloading liquid cargo in cargo holds are connected to the hull through support structures. However, many cases of hull damage have been reported where the various equipment and support structures are installed on the upper deck. It is assumed that not only the structural discontinuity where the hull and the pipe support structure meet, but also action due to the pipe loads and the hull girder bending moment are simultaneously affected. This paper deals with the design and strength evaluation of the support structure of pipes and cables installed on the upper deck of commercial ships and offshore structures. For these supporting structures, design conditions and working loads were defined. The design procedure was established through the structure analysis on the method of determining the member dimensions. A series of finite element analysis was performed on the factors to be considered in the design and the effects were discussed. The accuracy and design periods of the strength evaluation was improved and reduced by application of the automation program in the finite element analysis. It is also expected that the design reliability of the shipyard is improved.

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

Development of a Pipe Modeling System based on the Hull Structural Model Applying the Rapid Pipe Routing Method (쾌속 배관 라우팅 방법을 적용한 선체 구조 모델 기반의 배관 모델링 시스템 개발)

  • Roh, Myung-Il;Choi, Woo-Young;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.321-329
    • /
    • 2007
  • The present pipe modeling method requires detailed inputs from a designer to generate a pipe model, and thus it takes much time for the designer to perform such task. Moreover, the pipe model has no relation with the hull structure. Thus, it is time-consuming and requires much effort if design changes arise. In this study, a generating method that generates quickly many pipes using a pipe tray and a conversion method that converts automatically the pipes into objects related with the hull structure are proposed. A pipe modeling system based on the proposed methods is developed. The applicability of the developed system is demonstrated by applying it to the generation of the pipe model of a deadweight 300,000 ton VLCC(Very Large Crude oil Carrier). The results show that the developed system can quickly generate the pipe model in relation with the hull structure.

Study on the Theoretical Background of the Rules for the Bulkhead Plates (선체격벽판 규정식의 이론적 배경에 관한 연구)

  • J.S. Mah
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.157-165
    • /
    • 1992
  • Three dimensional structural analysis is carried out to evaluate the global behavior of the platings for the watertight bulkhead and deep tank bulkhead of the selected model ship and to analyze the theoretical background of their formulations for the bulkhead platings in the Rules of each classification societies. In this study, coarse and fine mesh analysis for transverse bulkhead is carried out to know the stress distribution in way of the concerned areas and that result is presented to show the back data for the new formulations of such transverse bulkhead platings.

  • PDF

Structure & Installation Engineering for Offshore Jack-up Rigs

  • Park, Joo-Shin;Ha, Yeong-Su;Jang, Ki-Bok;Radha, Radha
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • Jack-up drilling rigs are widely used in offshore oil and gas exploration industry. It is originally designed for use in the shallow waters less than 60m of water depth; there is growing demand for their use in deeper water depth over 150m and harsher environmental conditions. In this study, global in-place analysis of jack-up rig leg for North-sea oil well is performed through numerical analysis. Firstly, environmental conditions and seabed characteristics at the North-sea are collected and investigated measurements from survey report. Based on these data, design specifications are established and the overall basic design is performed. Dynamic characteristics of the jack-up rig for North-sea are considered in the global in-place analysis both leg and hull and the basic stability against overturning moment is also analyzed. The structural integrity of the jack-up rig leg/hull is verified through the code checks and the adequate safety margin is observed. The uncertainty in jack-up behaviour is greatly influenced by the uncertainties in the soil characteristics that determine the resistance of the foundation to the forces imposed by the jack-up structure. Among the risks above mentioned, the punch-through during pre-loading is the most frequently encountered foundation problem for jack-up rigs. The objective of this paper is to clarify the detailed structure and installation engineering matters for prove the structural safety of jack-up rigs during operation. With this intention the following items are addressed; - Characteristics of structural behavior considering soil effect against environmental loads - Modes of failure and related pre-loading procedure and parameters - Typical results of structural engineering and verification by actual measurement.

  • PDF

Vibration Analysis of Mindlin Plates Using Polynomials Having the Property of Timoshenko Beam Functions (Timoshenko보함수 성질을 갖는 다항식을 이용한 Mindlin판유추 구조계의 진동해석)

  • J.H. Chung;T.Y. Chung;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.158-172
    • /
    • 1992
  • In ships and offshore structures, there are many local structures formed of thick plates and/or having the form of double wall panels. For the vibration analysis of such a kind of structures, Mindlin plate theory which includes the effects of shear deformation and rotary inertia is usually adopted. In this paper, the vibration and dynamic sensitivity analysis of Mindlin plates having the boundary conditions elastically restrained against rotation have been accomplished using the Rayleigh-Ritz method. Polynomials having the property of the Timoshenko beam functions are introduced and used as trial functions in the spatial representation of the deflection and rotations of cross sections in two directions of the plates. The results obtained by the introduced polynomials gave nearly the same numerical results as those by the Timoshenko beam functions with the remarkable reduction of computational efforts especially in the dynamic sensitivity analysis.

  • PDF

Development of Analytical Simulation Model for Fatigue Crack Propagation : Crack Closure Behavior Modeling (균열개폐구 거동을 고려한 피로균열전파 해석 모델의 개발 : 균열 개폐구 거동의 모형화)

  • C.W. Kim;I.S. Nho;H.H. Van;B.C. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.74-83
    • /
    • 2001
  • After the concept of fracture mechanics was applied to fatigue crack propagation by Paris. Paris' law is widely used to predict fatigue crack growth behavior. Since Elber proposed the effective stress intensity factor(SIF) and showed a good agreement with experimental results using the proposed SIF, emphasis in crack propagation studies has been placed on measuring the effective stress range ratio. This paper proposes a numerical model to simulate the crack closure and propagation behaviour under various loading spectrum. The validity of the proposed model is checked by comparing with the Toyosada numerical solutions on the crack propagation behaviour. Important insights developed are summarized.

  • PDF

The System Reliability Analysis of Web Frame by Plastic Strength Analysis (소성 강도 해석에 의한 Web Frame의 시스템 신뢰성 해석)

  • Y.S. Yang;S.J. Yim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.251-267
    • /
    • 1991
  • Plastic strength analysis using plastic failure mode as a limit state is adopted instead of a conventional elastic structural analysis to predict the ultimate strength of Web frame idealized by a plane frame. Linear programming arid Compact procedure are developed for determining the collapse load factor. It is found that the final results are good agreement with the results of Elasto-plastic analysis. Besides, the redundant structures like Web frame is known to have multiple failure modes. Web frame may collapse under any of the possible failure modes. Thus, the identification of these possible failure modes is necessary and very important in the reliability analysis of Web frame. In order to deal with multiple failure modes, automatic generation method of all failure modes and basic failure modes is used for selecting the dominant failure modes. The probability of failure pastic collapse of Web frame is calculated using these dominant failure modes. The safety of Web frame is asscssed and compared by performing the deterministic and probabilistic analysis.

  • PDF

Experimental Study on Turbulent Structure of Flow around KRISO 3600TEU Container Double-deck Model (KRISO 3600TEU 콘테이너 모형선 주위 유동의 난류구조에 관한 실험적 연구)

  • Hak-Rok Kim;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.8-14
    • /
    • 1999
  • The flor characteristics around the KRISO 3600TEU container ship model have been experimentally investigated in a subsonic wind tunnel. The mean velocity and turbulence characteristics in the stern and wake regions were measured using an x-type hot-wire probe. The flow characteristics in the stern and near wake regions revealed a complicated three-dimensional flow pattern. The measured results showed clearly the formation of longitudinal vortices and their effect on the flow pattern in the wake region. The shear layer developed along the ship model expands showly to the downward direction. The turbulence statistics measured can be used as comparative data of numerical simulations and provide insights into development of accurate turbulence models for the ship design.

  • PDF