• 제목/요약/키워드: 선분가시 다각형

검색결과 3건 처리시간 0.016초

선분가시 다각형 내부에 있는 두 점 사이의 최단 경로를 구하는 빠른 알고리즘 (A Fast Shortest Path Algorithm Between Two Points inside a Segment-Visible Polygon)

  • 김수환
    • 한국정보통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.369-374
    • /
    • 2010
  • 다각형 내부에 위치한 두 점 사이의 최단 경로는 다각형의 외부를 지나지 않는 경로 중에서 길이가 가장 짧은 경로를 말한다. 일반적인 단순 다각형에서 최단 경로를 구하는 선형 시간 알고리즘은 매우 복잡한 과정으로 알려진 삼각분할을 전처리과정으로 수행해야 한다. 따라서 이론적으로는 최적인 시간복잡도를 갖지만, 실제적으로는 구현이 어려울 뿐만 아니라 입력의 크기가 매우 크지 않은 한 수행 시간이 효율적이지 못하다. 본 논문에서는 다각형 내부의 모든 점들을 볼 수 있는 선분이 존재하는 다각형 부류인 선분가시 다각형의 내부에 위치한 두 점 사이의 최단 경로를 구하는 선형 시간 알고리즘을 제시한다. 이 알고리즘은 삼각 분할을 필요로 하지 않으며, 볼록 외피 구축 등 단순한 절차만으로 구성되어 있어 구현이 용이할 뿐만 아니라 수행 속도도 빠르다

구멍이 있는 다각형에서 가시성 다각형을 구하는 상수 시간 RMESH 알고리즘 (Constant Time RMESH Algorithms for Computing the Visibility Polygon in a Polygon with Holes)

  • 김수환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (1)
    • /
    • pp.548-550
    • /
    • 2000
  • 본 논문은 재구성 가능한 메쉬(RMESH) 병렬 모델에서 상수 시간에 구멍이 있는 다각형의 한 점으로부터의 가시성 다각형을 구하는 문제를 고려한다. 알고리즘의 기본 전략은 프로세서의 수에 있어 준-최적인 상수 시간 알고리즘을 사용하여 문제의 크기를 감소시킴으로써 최적인 상수 시간 알고리즘을 얻는 것이다. 이 전략을 사용해 모두 N개의 에지로 구성된 구멍이 있는 다각형에 대한 가시성 다각형을 N$\times$N RMESH에서 상수 시간에 구하는 알고리즘을 제시한다. 이 알고리즘은 다각형들의 집합이 주어져 있을 때 외부의 한 점에서 가시 영역을 구하거나, 선분들의 집합이 주어져 있을 때 평면상의 한 점에서 가시 영역을 구하는 문제도 해결할 수 있다.

  • PDF

단순 다각형 계층구조에서의 삼각화와 경비가능충분집합 (A Triangulation and Guard Sufficiency Set of the Hierarchy of Simple Polygons)

  • 양태천
    • 정보처리학회논문지A
    • /
    • 제15A권5호
    • /
    • pp.295-300
    • /
    • 2008
  • 본 논문은 화랑문제 분야에 관한 것으로, 다각형의 계층구조에서 경비충분집합에 될 수 있는 기하학적인 요소들에 관해 다루었다. 경비충분 집합이 될 수 있는 기하학적인 요소로 다각형의 삼각화를 고려하였고, 다각형의 삼각화한 대각선분에 대해 완전가시성으로 양쪽을 다 감시할 경우 경비충분집합이 되는 삼각형의 부류가 볼록 다각형, 단변단조 다각형, 소용돌이 다각형임을 보였고, 그 외의 별모양 다각형, 단조 다각형, 완전외부가시성 다각형에서는 경비충분집합이 되지 못함을 보였다.