• Title/Summary/Keyword: 선박 추진용 대형엔진

Search Result 5, Processing Time 0.018 seconds

Structural Analysis for Gear Column of Large Bore Diesel Engine (선박 추진용 대형 디젤엔진 기어컬럼의 구조해석)

  • Lee, Jong-Hwan;Nam, Dae-Ho;Son, Jung-Ho;Bae, Jong-Gug
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.448-452
    • /
    • 2008
  • 2-stroke marine diesel engine has generally one exhaust valve and three fuel injection nozzle which are key component for engine's performance and combustion. Fuel injection and exhaust valve driving system are driven by rotating of camshaft. Rotation of crank shaft drives the cam shaft through gear train that is composed of $3{\sim}4$ gear wheels. Gear column supporting the gear wheel has to bear against the dynamics forces by engine running as well as gearing forces. In this paper, structural analysis for engine structure and fatigue strength assessment of welded joint is shown. Repeatedly full cyclic simulation during one cycle is performed to investigate the structural behavior of engine. Fatigue analysis is carried out based on IIW using submodeling technique to obtain more detailed stress distribution.

  • PDF

A Study on Revolving Characteristics According to Stator Shape in 5MW Class Brushless DC Motor for Ship Propulsion (선박용 5MW급 BLDC 추진전동기의 고정자 형상에 따른 회전특성에 관한 연구)

  • Kim, Dong-Sok;Sung, Il-Kwon;Kim, Jang-Mok;Park, Gwan-Soo;Kim, Han-Deul;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.47-49
    • /
    • 2005
  • 최근의 선박 추진시스템은 기존의 엔진, 터빈 둥의 구동 원에서 선박의 발전기로부터 선체 외부의 프로펠러와 일체형으로 구성된 모터를 구동하여 추진하는 전기추진식으로 변화되고 있다. 특히, 히토류계 영구자석재질의 발달로 인하여 대형선박의 추진을 위한 대용량 자석계자형 BLDC와 영구자석형 동기전동기의 설계 연구가 활발히 이루어지고 있다. 그러나 여전히 MW급 대용량 BLDC 추진전동기의 설계 연구는 미흡한 실정이다. 이에 본 연구에서는 5MW급 대용량 BLDC 추진전동기 설계 연구를 진행하였으며, 그 결과 슬롯 수에 의한 고정자 형상이 다른 3가지 타입의 인버터 내장형 MW급 모델을 설계하였다. 그리고 이들 모델들을 정자계 유한요소법을 이용하여 해석함으로써 고정자 형상에 따른 회전특성을 분석하였고, 이를 바탕으로 본 설계 조건에 적합한 고정자 형상 설계 방향을 제시하였다.

  • PDF

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (II) - Exergy Analysis for Working Fluids of R245fa and Water - (선박용 디젤엔진의 배기가스 열회수 시스템 (II) - R245fa 및 Water 의 작동유체에 대한 엑서지 분석 -)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.593-600
    • /
    • 2012
  • The exergy characteristics for R245fa and water working fluids have been analyzed for an electric generation system utilizing the Rankine cycle to recover heat from the wasted exhaust gas from a diesel engine used for the propulsion of a large ship. The theoretical calculation results showed that the efficiencies of exergy and system exergy improved as the turbine inlet pressure increased for R245fa at a fixed mass flow rate. Furthermore, the exergy destruction rates of the condenser and evaporator were relatively larger than those in other components. The exergy efficiency of the system increased with increasing mass flow rate. For a water working fluid, although the exergy destruction rate of the evaporator was similar to that for R245fa, the exergy loss rate varied significantly in response to variations in the pressure and mass flow rates at the turbine inlet.

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (I) - Energy Efficiency Comparison for Working Fluids of R245fa and Water - (선박용 디젤엔진의 배기가스 열회수 시스템 (I) - R245fa 및 Water 의 작동유체에 대한 에너지효율 비교 -)

  • Choi, Byung-Chul;Kim, Young-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.293-299
    • /
    • 2012
  • The thermodynamic efficiency characteristics of R245fa and water as working fluids have been analyzed for the electricity generation system applying the Rankine cycle to recover the waste heat of the exhaust gas from a diesel engine for the propulsion of a large ship. The theoretical calculation results showed that the cycle, system, and total efficiencies were improved as the turbine inlet pressure was increased for R245fa at a fixed mass flow rate. In addition, the net work rate generated by the Rankine cycle was elevated with increasing turbine inlet pressure. In the case of water, however, the maximum system efficiencies were demonstrated at relatively small ratios of mass flow rate and turbine inlet pressure, respectively, compared to those of R245fa. The optimized values of the net power of the cycle, system efficiency, and total efficiency for water had relatively large values compared to those of R245fa.

New Business Success using Strategic Innovation Strategy: Marine Engine Business and HEMAPT System of the Hyundai Heavy Industries Co. (신규사업성공과 전략적 기술혁신전략: 현대중공업의 엔진사업진출과 HEMAPT시스템 개발)

  • Kim, Wha Young
    • Journal of Service Research and Studies
    • /
    • v.6 no.2
    • /
    • pp.23-35
    • /
    • 2016
  • Firms should seek greater profits and corporate growth through new businesses. New businesses contribute realizing creative economy that creates good jobs, and expanding the company by securing new markets and creating new profits and growth. However, new business is risky management decision-making to have a high failure rate because it involves the adaptation of new business environment and the burden of new investments, including the uncertainty of success in business. Therefore, innovation strategies play important roles for the new business entry, using product innovation, process innovation, business model innovation, disruptive innovation, and strategic innovation, etc. and company will get huge economic results by pushing them into successful business. It is essential that innovation strategy and IT development strategy along with business strategy of a firm are linked, and their strategic alignment is considered to be a critical success factor for new business success. Hyundai Heavy Industries(HHI) pursued marine engine business for the development of precision machinery industry and shipbuilding industry of Korea, and the company recognized the importance of new business strategy, innovation strategy, and IT strategy inter-linked, and pushed strategic alignment boldly. As a result, HHI won the competition in European and Japanese engine manufacturers and climbed into the world's largest engine manufacturer. This study suggests investigating and analyzing a case that HHI succeeded in marine engine business expansion using strategic innovation strategy as a way of the introduction of CNC machine tools and the development of HEMAPT system.