• Title/Summary/Keyword: 선박 배출물

Search Result 83, Processing Time 0.03 seconds

Real Time Measurement of Exhaust Emissions from Main Engine using Training Ship (실습선을 이용한 주 추진기관의 배기배출물의 실시간 계측)

  • Choi, Jung-Sik;Lee, Sang-Deuk;Lee, Kyoung-Woo;Chun, Kang-Woo;Nam, Youn-Woo;Yoon, Seok-Hun;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.531-537
    • /
    • 2013
  • In this study, we conducted real-time measurement at the ship arrivals and departures at the port and at a constant speed of 150 rpm for exhaust emissions from a main engine installed on the training ship, HANBADA, of Korea Maritime University. The result showed that the concentration of nitrogen oxide was measured in the range of 800 ppm to 1,000 ppm at constant speed mode. On the other hand, the concentration of nitrogen oxide during ship arrivals and departures was significantly fluctuated between 210 ppm and 1,230 ppm. And, the concentration of carbon oxide at the arrivals and departures was also larger than that of at constant speed mode. These results show that the ship maneuvering skills to prevent a sudden load change of main engine at the arrivals and departures of ship is needed. Additionally, it means that the difference of exhaust emissions generated between the constant speed mode and the arrival/departure has to be considered when invented many technologies are adopted into the reduction technologies of air pollutants from ships.

Counting Harmful Aquatic Organisms in Ballast Water through Image Processing (이미지처리를 통한 선박평형수 내 유해수중생물 개체수 측정)

  • Ha, Ji-Hun;Im, Hyo-Hyuk;Kim, Yong-Hyuk
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.3
    • /
    • pp.383-391
    • /
    • 2016
  • Ballast water provides stability and manoeuvrability to a ship. Foreign harmful aquatic organisms, which were transferred by ballast water, cause disturbing ecosystem. In order to minimize transference of foreign harmful aquatic organisms, IMO(International Maritime Organization) adopted the International Convention for the Control and Management of Ship's Ballast Water and Sediments in 2004. If the convention take effect, a port authority might need to check that ballast water is properly disposed of. In this paper, we propose a method of counting harmful aquatic organisms in ballast water thorough image processing. We extracted three samples from the ballast water that had been collected at Busan port in Korea. Then we made three grey-scale images from each sample as experimental data. We made a comparison between the proposed method and CellProfiler which is a well known cell-counting program based on image processing. Setting of CellProfiler is empirically chosen from the result of cell count by an expert. After finding a proper threshold for each image at which the result is similar to that of CellProfiler, we used the average value as the final threshold. Our experimental results showed that the proposed method is simple but about ten times faster than CellProfiler without loss of the output quality.

A Study on the Characteristics of Exhaust Emissions by Biodiesel Blend Waste Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐혼합유의 배기배출물특성에 대한 연구)

  • Cho, Sang-Gon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • Recently worldwide concern and research is being actively conducted on green energy which can reduce environmental pollution. A plant such as the natural rapeseed oil, soybean oil, palm, etc. is used as a bio source in home and industry. Biofuels is a sustainable fuel having economically benefits and decreasing environmental pollution problems caused due to fossil fuel, and it can be applied to the conventional diesel engine without changing the existing institutional structure. Waste vegetable oil contains a high cetane number and viscosity component, the low carbon and oxygen content. A lot of research is progressing about the conversion of waste vegetable oil as renewable clean energy. In this study, waste oil was prepared to waste cooking oil generated from the living environment, and applied to diesel engine to confirm the possibility and cost-effectiveness of biodiesel blend waste oil. As a result, brake specific fuel consumption and NOx was increased, carbon monoxide and soot was decreased.

A Study on the Performance Analysis and Flow Characteristics of the Nozzle for Fuel Oil Scrubber (연료유 스크러버 노즐의 성능 해석과 유동특성)

  • Kim, Jeong-Yoon;Kim, Chang-Goo;Jang, Ki-Won;Lee, Kyoung-Woo;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.112-113
    • /
    • 2011
  • 선박으로부터 배기오염에 대한 국내의 관련 규제들이 강화되면서 관련 기술 개발이 급격하게 이뤄지고 있다. 그 중 탱커선의 화물탱크로부터 배출되는 유중기를 대기중으로 방출하지 않고 회수할 수 있는 설비 관련기술이 개발되고 있다. 회수설비 중 포함되는 스크러버는 가스 속의 부유 고액 미립자를 액을 이용하여 포집하는 장치로서, 스프레이 노즐을 통해 액을 분사하며, 일반적으로 물을 사용한다. 고효율 스크러버 설계기술 개발을 위해 스크러버용 노즐의 성능해석과 유동가시화 실험을 통한 내부유동 특성을 연구하였다.

  • PDF

하이브리드 등부표 발전 시스템 특성에 관한 연구

  • Yang, Hyang-Gwon;Lee, Ji-Yeong;O, Jin-Seok;Han, Ju-Seop
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.85-87
    • /
    • 2018
  • 전 세계적으로 온실가스 배출 규제가 강화되고 있고 에너지 절감 및 환경오염 문제가 없는 재생에너지에 대한 관심이 높아지고 있다. 육상 전력을 공급받기 어려움 해양 구조물의 경우에는 배터리와 같은 에너지 저장장치 또는 재생에너지를 활용하여 독립 전원 시스템을 구성하게 된다. 해양에서 활용이 가능한 재생에너지로는 태양광, 풍력, 파력, 조력등이 있으며 이러한 자연 에너지를 활용하는 재생에너지 발전 시스템의 경우 환경의 영향을 많이 받게 되므로 안정적인 전력 생산에 어려움이 있다. 예를 들어 태양광 발전 시스템의 경우 일조량에 따라 발전량이 결정되고, 풍력 발전 시스템의 경우 풍속 및 풍향이 발전량에 영향을 미친다. 따라서 독립전원시스템에서 태양광-풍력-파력의 멀티소스를 갖는 하이브리드 발전 시스템을 구성하여 기상상태에 따른 발전량을 보완가능하게 구성하면 보다 안정적으로 전력을 얻을 수 있다. 본 연구에서는 항만 및 협수로를 항해하는 선박 안전을 위해 설치된 등부표에 적용하는 해상하이브리드발전시스템을 설계하고 실증을 통해 하이브리드 발전시스템의 발전 특성을 확인한다.

  • PDF

Effect of Changing the Intake Air Temperature in a Marine Diesel Engine on the Characteristics of Exhaust Gas Emission (선박 디젤기관의 배기배출물 특성이 흡기 온도변화에 미치는 영향)

  • Cho, Sang-Gon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.788-794
    • /
    • 2019
  • Recently, global climate change caused by greenhouse gases has emerged as a significant air-environmental problem. Technical innovation in response to this phenomenon is ongoing, with an emphasis on the environmental impacts of unusually high temperatures and unexpected heavy rainfall. In this study, we investigated the effects of temperature change on air pollution for a concomitant rapid temperature increase. The test conditions include loading from 0 % to 100 % at 1400 rpm, 1600 rpm, and 1800 rpm for a change in the intake air temperature of a marine diesel engine from 20 ℃ to 50 ℃. The experimental results revealed that CO and HC decreased slightly, whereas the brake specific fuel consumption, NOx, and PM increased slightly when the intake air temperature changed. In addition, it was determined that the combustion temperature did not change significantly.

[$CO_2$] Emission from Carbon of Marine Fuel Oil in New Ships (신조선에서 연료탄소로부터의 $CO_2$ 배출 특성)

  • Jang Mi-Suk;Kim Eun-Chan;Moon Il-Sung;Lee Jae-Woo;Kwon Oh-Sin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.148-153
    • /
    • 2006
  • This study dealt with the measurement of exhausted gas concentration, the estimation of a combustion efficiency, and the review of IMO indexing. We concentrated on establishing the basic data to take a counterplan coping with $CO_2$ regulations. The average combustion efficiency was 98% in shop test of new engines and 96.5% in sea trial test of new ships, respectively. It would become lower for the old engine or/and ship. High combustion efficiency results in high $CO_2$ emission and low combustion efficiency results in high emission of incomplete combustion products. The efficient method reducing $CO_2$ emission without an increase in noxious air pollutants would be the development of a substitute fuel and the fuel-efficient and economical engine, and the fair play among shipping agencies in a ship speed. In reviewing of IMO indexing, it is necessary to begin by analyzing the carbon content of a marine fuel for a precise estimates.

  • PDF

Effect of fuel component on nitrous oxide emission characteristics in diesel engine (디젤엔진에 있어서 연료의 성분이 아산화질소 배출에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1045-1050
    • /
    • 2014
  • $N_2O$(Nitrous Oxide) is known as the third major GHG(Green House Gas) following $CO_2$(Carbon Oxide) and $CH_4$(Methane). The GWP(Global Warming Potential) factor of $N_2O$ is 310 times as large as that of $CO_2$ because $N_2O$ in the atmosphere is very stable, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. Investigation on the cause of the $N_2O$ formation have been continuously reported by several researchers on power sources with continuous combustion form, such as a boiler. However, in the diesel engine, research on $N_2O$ generation which has effected from fuel components has not been conducted. Therefore, in this research, author has investigated about $N_2O$ emission rates which was changed by nitrogen and sulfur concentration in fuel on the diesel engine. The test engine was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition of that was set up at a 75% load. Nitrogen and sulfur concentrations in fuel were raised by using six additives : nitrogen additives were Pyridine, Indole, Quinoline, Pyrrol and Propionitrile and sulfur additive was Di-tert-butyl-disulfide. In conclusion, diesel fuels containing nitrogen elements less than 0.5% did not affect $N_2O$ emissions in the all concentrations and kinds of the additive agent in the fuel. However, increasing of the sulfur additive in fuel increased $N_2O$ emission in exhaust gas.

Experimental study of NOx reduction in marine diesel engines by using wet-type exhaust gas cleaning system (선박용 디젤엔진의 NOx를 저감하기 위한 습식 배기가스 처리기술 적용에 관한 실험적 연구)

  • Ryu, Younghyun;Kim, Taewoo;Kim, Jungsik;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.216-221
    • /
    • 2017
  • Diesel engines have the highest brake thermal efficiency among internal combustion engines. Therefore, they are utilized in medium and large transportation vehicles requiring large amounts of power such as heavy trucks, ships, power generation systems, etc. However, diesel engines have a disadvantage of generating large quantities of nitrogen oxides during the combustion process. Therefore, the authors tried to reduce the amount of nitrogen oxides in marine diesel engines using a wet-type exhaust gas cleaning system utilizing the undivided electrolyzed seawater method. In this method, electrolyzed seawater in injected into the harmful gas discharge from the diesel engine using real seawater. The authors investigated the reduction of NO and NOx from the pH value, available chlorine concentration, and the temperature of electrolyzed seawater. The results of this experiment indicated that when the electrolyzed seawater is acidic, the NO oxidation rate in the oxidation tower is higher than that when the electrolyzed seawater has a neutral pH. Likewise, the NO oxidation rate increased with the increase in concentration of chlorine. Further, it was confirmed that the electrolyzed seawater temperature had no effect on the NO oxidation rate. Thus, the NOx exhaust emission value produced by the diesel engine was reduced by means of electrolyzed seawater treatment.

A Study on Microorganism Dominant Species in Bench-scale Shipboard STP Using Combined SBR and MBR Process (SBR 및 MBR 복합공정을 적용한 Bench-scale Shipboard STP에서의 미생물 우점종에 관한 연구)

  • Choi, Young-Ik;Shin, Dae-Yeol;mansoor, Sana;Kwon, Min-Ji;Jung, Jin-Hee;Jung, Byung-Gil
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 2018
  • International Maritime Organization (IMO) is one of the most effective organizations in evolving international law for the protection and conservation of the marine environment. The IMO, MARPOL(Marine Pollution) 73/78 contains six Annexes that provide an overarching framework for the objectives of the international marine pollution. Annex IV was regulated by 64 th resolution in 2012 to control sea pollution from sewage. In 2014 large-scale wastewater treatment and nutrient removal device was developed with a grant from the Ministry of Oceans and Fisheries. A combined new process of Sequence Batch Reactor (SBR) and Membrane Bioreactor(MBR) was developed to overcome the pollution caused by shipboard sewage. In the present study, shipboard sewage wastewater was treated by mixing and aeration cycle in the newly developed SBR process. Furthermore, during analysis by NGS technique(Macrogen Co., Ltd.), dominant species of bacteria were found in the aeration tank of the Bench-scale wastewater treatment facility. Bacteroidetes and Gammaproteobacteria accounted for 27.1 % of the aerobicbacteria and 16.8 % of the anaerobicbacteria, respectively. Microorganisms play a vital role in shipboard wastewater treatment. A further detailed study is required to understand the precise role of the microorganisms in the wastewater treatment.