• Title/Summary/Keyword: 선박 감지

Search Result 96, Processing Time 0.019 seconds

Enhanced Tactical Situation Display for Tactical Stations of P-3C Maritime Patrol Aircraft (P-3C 해상초계기 전술 컴퓨터의 전술정보 화면 표시 성능 개선)

  • Kim, Byoung-Kug;Kim, Jae-Hyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.451-457
    • /
    • 2020
  • Diverse sensors are equipped on P-3C Maritime Patrol Aircraft for RoKN to detect and monitor tactical targets. Tactical targets are maintained/shared by tactical computer stations which consist of a clustering network in the aircraft and displayed in various ways on TSDs(Tactical Situation Displays) for mission operators to perform their specified missions. Korea peninsula is widely covered with the sea areas and neighboured with several countries; which makes huge number of ships and aircraft deployment around the place. Due to an increase in number of sensors and enhancement of their sensitivities; we were aware of the necessity of TSD improvements to provide huge number of tactical targets and to display them efficiently. In this paper, we propose a solution for the improvements by using previous backup data and re-usage of the data, then we verify the proposal through implementation and evaluation results.

A Study of Evacuation Route Guidance System using Location-based Information (위치기반 정보를 활용한 비상대피경로 안내 지원시스템 개발)

  • Kim, Ho-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.18-23
    • /
    • 2017
  • The shipyard quay process struggles to control workers and maintain a secure working environment because of the presence of at least 1,000 people. Therefore, safety accidents such as an explosion or a fire are likely to occur. With the recent increase in safety accidents at shipyards, the requirements for safety and process monitoring have been strengthened. Major shipyards are conducting researchto monitor the process in real time and to detect the work environment for safety. In this paper, we propose a safe and accurate evacuation route based on the information of the dangerous area and the user's location based on a mobile application to reduce the casualty accidents in the presence of many personnel in a concentrated area. To do this, we analyze the trend of the fire escape system on the ground building, compare various algorithms for escape route calculation, select appropriate algorithms for this study, and perform programming. A basic experiment was conducted to confirm the results. The proposed method is expected to be used in large ship construction sites, passenger ships and large public facilities to reduce accidents in the case of a safety accident.

Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning (딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.

Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning (비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발)

  • Min, Jiyoung;Yu, Byeongjun;Kim, Jonghyeok;Jeon, Haemin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.28-36
    • /
    • 2022
  • As port structures are exposed to various extreme external loads such as wind (typhoons), sea waves, or collision with ships; it is important to evaluate the structural safety periodically. To monitor the port structure, especially the rubber fender, a fender segmentation system using a vision sensor and deep learning method has been proposed in this study. For fender segmentation, a new deep learning network that improves the encoder-decoder framework with the receptive field block convolution module inspired by the eccentric function of the human visual system into the DenseNet format has been proposed. In order to train the network, various fender images such as BP, V, cell, cylindrical, and tire-types have been collected, and the images are augmented by applying four augmentation methods such as elastic distortion, horizontal flip, color jitter, and affine transforms. The proposed algorithm has been trained and verified with the collected various types of fender images, and the performance results showed that the system precisely segmented in real time with high IoU rate (84%) and F1 score (90%) in comparison with the conventional segmentation model, VGG16 with U-net. The trained network has been applied to the real images taken at one port in Republic of Korea, and found that the fenders are segmented with high accuracy even with a small dataset.

Changes in The Sensitive Chemical Parameters of the Seawater in EEZ, Yellow Sea during and after the Sand Mining Operation (서해 EEZ 해역에서 바다모래 채굴에 민감한 해양수질인자들)

  • Yang, Jae-Sam;Jeong, Yong-Hoon;Ji, Kwang-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • Eight comprehensive oceanographic cruises on a squared $30{\times}30\;km$ area have been made to investigate the short and long-term impacts on the water qualities due to the sand mining operations at Exclusive Economic Zone (EEZ) in the central Yellow Sea from 2004 to 2007. The area was categorized to 'Sand Mining Zone', 'Potentially Affected Zone', and 'Reference Zone'. The investigation covered suspended solids, nutrients (nitrate, nitrite, ammonium, phosphate), and chlorophyll-a in seawater and several parameters such as water temperature, salinity, pH, and ORP. Additionally, several intensive water collections were made to trace the suspended solids and other parameters along the turbid water by sand mining activities. The comprehensive investigation showed that suspended solids, nitrate, chlorophyll-a and ORP be sensitively responding parameters of seawater by sand mining operations. The intensive collection of seawater near the sand mining operation revealed that each parameter show different distribution pattern: suspended solids showed an oval-shaped distribution of the north-south direction of 8 km wide and the east-west direction of 5 km wide at the surface and bottom layers. On the other hand, phosphate showed so narrow distribution not to traceable. Also ammonium showed a limited distribution, but its boundary was connected to the high nitrate and chlorophyll-a concentrations with high N/P ratios. From the last 4 years of the comprehensive and intensive investigations, we found that suspended solids, ammonium, nitrate, chlorophyll-a, and ORP revealed the sensitive parameters of water quality for tracing the sand mining operations in seawater. Especially suspended solids and ORP would be useful tracers for monitoring the water qualities of remote area like EEZ in Yellow Sea.

Analysis of trends in the use of geophysical exploration techniques for underwater cultural heritage (수중문화유산에 대한 지구물리탐사 기법 활용 동향 분석)

  • LEE Sang-Hee;KIM Sung-Bo;KIM Jin-Hoo;HYUN Chang-Uk
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.3
    • /
    • pp.174-193
    • /
    • 2023
  • Korea is surrounded by the sea and has rivers connecting to it throughout the inland areas, which has been a geographical characteristic since ancient times. As a result, there have been exchanges and conflicts with various countries through the sea, and rivers have facilitated the transportation of ships carrying grain, goods paid for by taxes, and passengers. Since the past, the sea and rivers have had a significant impact on the lives of Koreans. Consequently, it is expected that there are many cultural heritages submerged in the sea and rivers, and continuous efforts are being made to discover and preserve them. Underwater cultural heritage is difficult to discover due to its location in the sea or rivers, making direct visual observation and exploration challenging. To overcome these limitations, various geophysical survey techniques are employed. Geophysical survey methods utilize the physical properties of elastic waves, including their reflection and refraction, to conduct surveys such as bathymetry, underwater topography and strata. These techniques detect the physical characteristics of underwater objects and seafloor formation in the underwater environment, analyze differences, and identify underwater cultural heritage located on or buried in the seabed. Bathymetry uses an echo sounder, and an underwater topography survey uses a side-scan sonar to find underwater artifacts lying on or partially exposed to the seabed, and a marine shallow strata survey uses a sub-bottom profiler to find underwater heritages buried in the seabed. However, the underwater cultural heritage discovered in domestic waters thus far has largely been accidental findings by fishermen, divers, or octopus hunters. This study aims to analyze and summarize the latest research trends in equipment used for underwater cultural heritage exploration, including bathymetric surveys, underwater topography surveys and strata surveys. The goal is to contribute to research on underwater cultural heritage investigation in the domestic context.