• Title/Summary/Keyword: 선박제어

Search Result 807, Processing Time 0.029 seconds

Localization of People at Risk based on the Fire Alarm Networks and Bluetooth (화재경보망과 블루투스 기반으로 위험에 처한 사람의 위치 파악)

  • Kim, Chae-Won;Son, Joo-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.159-160
    • /
    • 2019
  • It would be very important to localize people at risk as soon as possible in order to minimize the damage. Generally the infrastructure should be deployed additionally for indoor positioning system. In this paper, we proposed an indoor localization system for people at risk using the existing fire alarm networks. The system detects the signal of smart devices of people in danger immediately and let the main alarm controller ring all alarms in vessel and display the position. Thus, the proposed system can make the burden much less to deploy additional network and infrastructure.

  • PDF

A Study on Collision Avoidance Algorithm Based on Obstacle Zone by Target (Obstacle Zone by Target 기반 선박 충돌회피 알고리즘 개발에 관한 연구)

  • Chan-Wook Lee;Sung-Wook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.106-114
    • /
    • 2024
  • In the 21st century, the rapid development of automation and artificial intelligence technologies is driving innovative changes in various industrial sectors. In the transportation industry, this is evident with the commercialization of autonomous vehicles. Moreover research into autonomous navigation technologies is actively underway in the aviation and maritime sectors. Consequently, for the practical implementation of autonomous ships, an effective collision avoidance algorithm has become a crucial element. Therefore, this study proposes a collision avoidance algorithm based on the Obstacle Zone by Target(OZT), which visually represents areas with a high likelihood of collisions with other ships or obstacles. The A-star algorithm was utilized to represent obstacles on a grid and assess collision risks. Subsequently, a collision avoidance algorithm was developed that performs fuzzy control based on calculated waypoints, allowing the vessel to return to its original course after avoiding the collision. Finally, the validity of the proposed algorithm was verified through collision avoidance simulations in various encounter scenarios.

Control Method for Performance Improvement of BLDC Motor used for Propulsion of Electric Propulsion Ship (전기추진선박의 추진용으로 사용되는 브러시리스 직류전동기의 제 어방법에 따른 성능향상에 관한 연구)

  • Jeon, Hyeonmin;Hur, Jaejung;Yoon, Kyoungkuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.802-808
    • /
    • 2019
  • DC motors are used extensively on shipboard, including as the ship's winch operating motor, owing to their simple speed control and excellent output torque characteristics. Moreover, they were used as propulsion motors in the early days of electric propulsion ships. However, mechanical rectifiers, such as brushes, used in DC motors have certain disadvantages. Hence, brushless DC (BLDC) motors are increasingly being used instead. While the electrical characteristics of both types of motors are similar, BLDC motors employ electronic rectifying devices, which use semiconductor elements, instead of mechanical rectifying devices. The inverter system for driving conventional BLDC motors uses a two-phase excitation method so that the waveform of the back electromotive force becomes trapezoidal. This causes harmonics and torque ripple in the phase current switching period in which the winding wire through which the current flows is changed. Researchers have studied and presented various methods to reduce the harmonics and torque ripple. This study applies a cascaded H-bridge multilevel inverter, which implements a proportional-integral speed current controller algorithm in the driving circuit of the BLDC motor for electric propulsion ships using a power analysis program. The simulation results of the modeled BLDC motor show that the driving method of the proposed BLDC motor improves the voltage waveform of the input side of the motor and remarkably reduces the harmonics and torque ripple compared with the conventional driving method.

A Study on the Implementation of Intelligent Navigational Risk Assessment System for High-risk Vessel using IoT Sensor Gateway (IoT 센서연계장치를 이용한 고위험선박의 지능형 운항위험 분석 시스템 개발에 대한 연구)

  • Kim, Do-Yeon;Kim, Kil-Yong;Park, Gyei-Kark;Jeong, Jung-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2016
  • In the midst of continuing international recession, the rate of maritime traffic and marine leisure markets are consistently growing. The Republic of Korea controls the marine traffic volume through vessel traffic centers and various other management facilities. Nevertheless, the continuous growth and complexity of marine traffic is resulting in repeated occurrences of marine accidents. Recovery is very difficult in cases of human injuries or deaths caused by marine accidents due to its nature, and the scale of marine accidents is also becoming greater with advanced ship building technologies. Passenger ships, oil tankers, and other such vessels used for specific purposes requires a more detailed navigational status surveillance and analysis, and numerous research has been conducted with an objective for monitoring such special purpose vessels. However, the data elements transmitted from the ocean to the shore station are limited to AIS and ARPA. We are implementing IoT ship sensor collection and a syncing system capable of transmitting various ship sensing data to the shore station, and also proposing a Safe Navigation Status Analysis System utilizing the collected data.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

A Study on Energy Savings of a DC-based Variable Speed Power Generation System (직류기반 가변속 발전 시스템을 이용한 에너지 절감에 관한 연구)

  • Kido Park;Gilltae Roh;Kyunghwa Kim;Changjae Moon;Jongsu Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.666-671
    • /
    • 2023
  • As international environmental regulations on ship emissions are gradually strengthened, interest in electric propulsion and hybrid propulsion ships is increasing, and various solutions are being developed and applied to these ships, especially stabilization of the power system and system efficiency. The direct current distribution system is being applied as a way to increase the power. In addition, verification and testing of safety and performance of marine DC distribution systems is required. As a result of establishing a DC distribution test bed, verifying the performance of the DC distribution (variable speed power generation) system, and analyzing fuel consumption, this study applied a variable speed power generation system that is applied to DC power distribution for ships, and converted the power output from the generator into a rectifier. A system was developed to convert direct current power to connect to the system and monitor and control these devices. Through tests using this DC distribution system, the maximum voltage was 751.5V and the minimum voltage was 731.4V, and the voltage fluctuation rate was 2.7%, confirming that the voltage is stably supplied within 3%, and a variable speed power generation system was installed according to load fluctuations. When applied, it was confirmed through testing that fuel consumption could be reduced by more than 20% depending on the section compared to the existing constant speed power generation system.

A review on the Plan for the Further Reinforcement of the NOx Emission Limit for Marine Diesel Engine (선박에서 배출되는 NOx의 배출량 규제에 대한 대응 방안 고찰)

  • Jang M.S.;Kim S. H.;Kang K.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.174-179
    • /
    • 2004
  • Domestic marine diesel engine makers reduce the NOx emission mostly by applying low NOx fuel nozzle and injection timing retard. However, it is necessary to develop high efficient technology (EGR, DWI and SCR, etc.) to reduce NOx emission in order to prepare for the further reinforcement of the NOx emission limit. Also, in the near future, IMO will restrict additively THC, PM and CO with NOx. Therefore, domestic engine makers have to prepare for it and the relevant government ministries should give a sufficient support to these technology research and establish or amend the relevant law, which should include the excursion riverboat.

  • PDF

Performance Analysis of Multiple Access Protocol for Maritime VHF Data Exchange System (VDES) (해상 초단파 대역 데이터 교환 시스템을 위한 다중 접속 방식의 성능 분석 연구)

  • Yun, Changho;Cho, A-Ra;Kim, Seung-Geun;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2839-2846
    • /
    • 2014
  • New VHF band for use in VDE is determined by WRC-12 due to the overload of AIS VDL, and the system characteristics of the VDE is recommended as ITU-R M. 1842-1. CS-TDMA, a multiple access method of AIS class B, is recommended as that of the VDE. It is inefficient for CS-TDMA just applying the report interval used in AIS class B to transmit high speed data with higher payload in the aspect of efficiency. In this paper, a simulation is executed in order to determine adequate report interval according to the number of active ships that affects directly network traffic. To this end, the performance of CS-TDMA, which includes the number of received packets, reception success rate, channel utilization, and collision rate, is investigated via a simulation.

A Study on the Scale Effect and Improvement of Resistance Performance Based on Running Attitude Control of Small High-Speed Vessel (소형 고속선박의 항주자세 제어에 따른 저항성능 개선 및 축척 효과에 관한 연구)

  • Lee, Jonghyeon;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.538-549
    • /
    • 2021
  • In this study, a trim tab on the stern hull of a small high-speed vessel of approximately 10 m length sailing at a Froude number of 1.0 was designed for energy efficiency. The running attitude and resistance performance of the bare hull and trim tab hull at several angles to the base line were analyzed for model and full scale ships using computational fluid dynamics, and compared to investigate the scale effect. The analysis results for the bare hull were quite similar, but a difference in the attitude control under same conditions of the trim tab was observed, resulting in the total resistance error. However, there was no significant difference in tendency of the variation in the resistance with the attitude. Thus, the optimum running attitude could be determined from the tendency despite the scale effect, but a full scale analysis is required to analyze the control of the attitude by the trim tab and flow characteristics near the full scale ship.

A Study on the Improvement of Steering Command System through Accident Analysis of Azimuth thruster using STAMP Method

  • HyunDong Kim;SangHoon Lee;JeongMin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.149-158
    • /
    • 2023
  • With the global paradigm shift towards climate change, the shipbuilding industry is also considering propulsion systems that utilize eco-friendly fuels various propulsion systems are gaining attention as a result. In conventional propulsion systems, typically consisting of propellers and rudders, have evolved into a diverse range of systems due to the development of a special propulsion system known as the azimuth thruster. While azimuth thrusters were previously commonly installed on tugboats, they are now extensively used on offshore plant operation ships equipped with dynamic positioning systems. However, these azimuth thrusters require different steering methods compared to conventional propulsion systems, leading to a significant learning curve for the crew members boarding such vessels. Furthermore the availability of education related to these special propulsion systems is limited. This study aims to analyze accidents caused by inadequate control of vessels equipped with azimuth thrusters using the STAMP technique. And it proposes the necessity of standard steering commands for the safe operation of vessels equipped with special propellers.