• Title/Summary/Keyword: 선박용 프로펠러

Search Result 63, Processing Time 0.025 seconds

Analysis of Open-Water Characteristics of Marine Propeller by Computational Method for Viscous Flow (점성유동 수치해석법에 의한 선박용 추진기 단독성능 해석)

  • Dug-Soo Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.8-17
    • /
    • 2002
  • In this paper, the computational analysis of open-water characteristics for three model propellers(P4119, P4842 and 3 podded propeller of KRISO) is done by using a viscous-flow method based on Reynolds-Averaged Navier-Stokes equations. The results are presented for open-water performances, blade-section pressures, and circumferentially-averaged velocity profiles for the all three propeller models. Overall close agreements with available experimental data are shown. However, some discrepancies are also found in the pressure near the leading edge of the propeller blade and the open-water performance of the podded propellers.

워터제트 추진기

  • 서성부
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.28-31
    • /
    • 1995
  • 워터제트(Waterjet) 추진의 개념은 선박용 스크류 프로펠러 만큼이나 오래 되었지만, 1960년대 까지도 많은 이용이 없었다. 왜냐하면 스크류 프로펠러가 더 간단하고 가벼우면서 훨씬 더 효 율적인 추진도구로 간주되어 왔기 때문이었다. 그러나 최근 수년 사이에 워터제트로 추진되는 세계적인 선박들 및 제작회사들의 수가 괄목할만한 증가를 보이고 있고, 선진국의 초고속선 개 발과 관령하여 워터제트 추진방식에 대한 새로운 시각에서의 연구가 활발히 진행되어지고 있 다[1]. 21세기 해상교통수당을 선도할 수 있으리라 판단되고 있는 초고속선 개발 연구를 수행하고 있는 선박·해양공학연구센터에서도 초고속선용 추진 장치로서 워터제트 추진기를 선택하였었 다[2]. 이러한 대표적인 이유로서는 종래의 일반적인 선박용 스크류 프로펠러로서는 고속 추진에 한계를 가지고 있는 반면, 워터제트 추진방식은 각 요소들의 최적 설계를 통해 고속에서의 추 진효율 향상을 꾀할 수 있기 때문이었다. 선진국에서는 이미 이러한 워터제트 추진에 대한 성 능해석 기법이 정립되어 있고[3], 중.소형 워터제트 추진기 제작을 통한 경험을 바탕으로 대출력 워터제트 추진기 개발도 가능한 단계이다[4]. 그러나 국내에서는 이에 대한 연구가 거의 없어 외국의 기술에 의존하고 있는 실정이다. 본 고에서는 워터제트 추진기의 기본적인 개념과 당 연구센타에서 수행하고 있는 모형시험법 개발 연구의 일부를 소개하고자 한다.

  • PDF

Development of Furan Mold Design and Machining System for Marine Propeller Casting (선박용 프로펠러 후란주형 설계 및 가공 시스템 개발)

  • Park, Jung Whan;Jung, Chang Wook;Kwon, Yong Seop;Kang, Sung Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.121-128
    • /
    • 2016
  • A furan mold design and machining system for marine propeller casting was developed. In general, a large marine propeller is produced by casting in a foundry, where the upper and lower molds are constructed of cement or other materials like furan. Then, the cast workpiece is machined and manually ground. Currently, furan mold construction requires a series of manual tasks. This introduces a fairly large amount of stock allowances, which require a considerable number of man-hours for later machining and grinding, and also increase the work processes. A mold design and off-line robot programming software tool with a six-axis robot hardware system was developed to enhance the shape accuracy and productivity. This system will be applied in a Korean ship building company.

Comparative Study on Viscous and Inviscid Analysis of Partial Cavitating Flow for Low Noise Propeller Design (저소음 프로펠러 설계를 위한 부분공동 유동의 점성 및 비점성 수치해석 비교 연구)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Park, Cheol-Soo;Kim, Gun-Do
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.358-365
    • /
    • 2014
  • When a ship propeller having wing type sections rotates at high speed underwater, local pressure on the blade decreases and various types of the cavitation inevitably occur where the local pressure falls below the vapor pressure. Fundamentally characteristics of the cavitation are determined by the shapes of the blade section and their operating conditions. Underwater noise radiated from a ship propeller is directly connected to the occurrence of the cavitation. In order to design low noise propeller, it is preferentially demanded to figure out key features: how the cavity is generated, developed and collapsed and how the effect of viscosity works in the process. In this study, we first perform inviscid analysis of the partial cavity generated on two dimensional hydrofoil. Secondly, viscous analysis using FLUENT with different turbulence and cavitation models are presented. Results from both approaches are also compared and estimated.

Development of an Underwater Rope-cutter Device and Controller for Removal of Propeller and Shaft Foreign Material for Small Vessel (소형선박용 프로펠러 및 샤프트 이물질 제거를 위한 수중절단기 기구 설계 및 제어기 개발)

  • Lee, Hunseok;Oh, Jin-Seok;Choi, Sun-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.927-935
    • /
    • 2019
  • Screw-failure accidents in small ships frequently occur in coastal waters. In particular, vessels' propulsion systems are frequently coiled due to objects such as fish-nets and ropes that float on the sea. The failure of the ship's propulsion system can cause primary accidents such as ship operation delays and drifting due to loss of power; furthermore, the possibility of secondary accidents such as those involving operators in the underwater removal of rope stuck in a propeller. Ships that do not have the proper tools to solve these problems must be either lifted onto land to be repaired or divers must dive directly under the ship to solve the problem. Accordingly, some small vessels have been equipped with rope-cutter devices on the propeller shaft to prevent ship propeller system accidents in recent years; however, they are not being applied efficiently due to the cost and time of installation. To solve these problems, this study develops an underwater rope-cutter device and controller for the removal of propeller and shaft foreign material in small vessels. This device has simple structures that use the principle of a saw. Meteor gears and crank pins were used for the straight-line rotation of saw blades of the underwater rope-cutters to allow for long strokes. Furthermore, the underwater rope-cutting machines can be operated by being connected to the ship battery. The user, a non-professional, can ensure convenience and stability by applying reverse current prevention and a speed control circuit so that it can be used more conveniently and safely.

Transient analysis of marine propulsion motor and shaft under abnormal conditions (이상상태 발생 시 선박용 추진전동기 및 추진축의 과도상태 해석)

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Seung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.34-38
    • /
    • 2016
  • Recently, electric propulsion systems are been increasingly used in large cruise ships and merchant vessels. When abnormal electrical conditions occur in the motor of an electric propulsion ship, they can cause serious damage to the motor and propeller shaft. Research on abnormal conditions of propulsion motors used in electric propulsion vessels and electric ships difficult to find. In this study, a mathematical model of the electric propulsion system is proposed to analyze transient phenomena that occur in the case of electric propulsion motor or propeller shaft malfunction. A synchronous motor was used in the MATLAB computer simulation of this study. In the event of electrical malfunction of the electric propulsion motor at rated operation, over current occurs in the condition of 1 phase ground, over torque occurs at 3 and 2 phases ground and over current and torque occur when exciting power fails at rated operation.

Velocity Field Measurements of Propeller Wake Using a Phase-averaged PTV Technique (위상평균 PTV 기법을 이용한 프로펠러 후류의 속도장 측정)

  • Bu-Geun Paik;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.41-47
    • /
    • 2002
  • Turbulent wake behind a ship propeller has been investigated using the adaptive hybrid 2-frame PTV(Particle Tracking Velocimetry). 400 instantaneous velocity fields were measured according to 4 different blade phases and ensemble-averaged to investigate the spatial evolution of the vortical structure of near wake within one propeller diameter downstream. The phase averaged mean velocity fields show the potential wake and the viscous wake formed by the boundary layers developed on the blade surfaces. As the tip vortex evolves downstream, the slipstream is contracted and the turbulent intensity is decreased with viscous dissipation and turbulent diffusion.