• Title/Summary/Keyword: 선박배기가스

Search Result 111, Processing Time 0.026 seconds

선박배기가스 유해물질 저감을 위한 선박용 SCR 시스템 요소기술에 관한 소개

  • Park, Yun-Yong;Song, Ha-Cheol;Sim, Cheon-Sik;An, Gi-Ju;Park, Gi-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.77-78
    • /
    • 2015
  • 산업화로 인하여 토지의 사막화, 물부족, 오존층 파괴, 지구 온난화 등 많은 환경문제가 발생되었으며 아직 진행 중에 있다. 이에 UN에서는 환경 규제를 강화하였으며 국제해사기구(IMO:International Maritime Organization)에서는 선박의 배기가스 규제 강화를 위하여 NOx(질소산화물) 및 SOx(황산화물)의 배기량을 줄이도록 하고 있으며 2016년부터는 본격적으로 규제하려 하고 있다. 상기의 규제 물질 중 NOx를 제거하는 선택적환원촉매(SCR:Selectivity Catalytic Reduction) 시스템은 선박의 배기가스가 지나가는 통로에 요소수(Urea)를 분무하여 $260^{\circ}C$ 이상의 높은 온도에서 요소수에 있는 암모니아가 배기가스에 있는 NOx와 반응, 결합함으로서 NOx를 질소와 산소로 분리, 제거하는 방식이다. 하지만 선박의 경우 대부분 엔진이 2행정으로 배기가스 온도가 일반적으로 $180^{\circ}C{\sim}220^{\circ}C$이기 때문에 요소수에 있는 암모니아가 배기가스에 있는 NOx와 반응하지 않아 환원률이 높지 않다. 이에 우리는 초미세기포를 이용하여 낮은 온도에서도 반응할 수 있는 요소수 및 요소수 활성화 기기를 개발하여 상기의 문제점들을 최소화 할 수 있도록 하였다. 또한 SCR 시스템의 점성유동해석을 통하여 보다 효율적인 SCR 시스템의 개발을 할 수 있도록 기여하였다.

  • PDF

항만구역 내 선박 배기가스 산출량 연구 - 서산 대산항 컨테이너 부두를 중심으로 -

  • Kim, Hwa-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.357-357
    • /
    • 2018
  • 국제해사기구(IMO)에서는 황산화물(SOx)에 대한 배출 규제를 강화하고 있다. 2020년 1월 1일부터는 황함유량 0.5% 이하 선박연료유 사용을 의무화하고 있다. 그리고 온실가스 배출량 모니터링을 2019년 1월 1월부터 시행하여 총톤수 5천톤 이상 선박은 연료유 사용량을 의무적으로 보고해야 한다. 또한 배출통제구역(Emission Control Area, ECA)이 확대되고 있으며 지역별로도 저유황유 사용 의무화를 도입하는 항만이 증가하고 있다. 이와 같이 항만구역에서 선박 배기가스 배출 규제를 강화하고 있다. 본 연구에서는 컨테이너 물동량이 증가하고 있는 서산 대산항 컨테이너 부두를 중심으로 항만구역에서 배출되는 배기가스를 산출하였다.

  • PDF

A study on temperature characteristic of the gases supplied to SOFC system by utilizing the ship exhaust gas (선박 배기가스 활용에 따른 SOFC 시스템 공급가스의 온도특성에 관한 연구)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.822-828
    • /
    • 2013
  • Since the operating temperature of Solid Oxide Fuel Cell (SOFC) is high, the heat management of the gases supplied to fuel cell system is important. In this paper, the temperature characteristic of the gases supplied to the anode and the cathode of the fuel cell is studied in case of utilizing the waste heat contained in the ship exhaust gas as a heat source to heat up the fuel, gas and water supplied to a 500kW SOFC system for a ship power. For the fuel cell system proposed in this paper, the temperature of gases supplied to the anode and the cathode was the highest temperature at 963K when the exhaust gas of the fuel cell was utilized as the heat source for gases supplied to fuel cell system instead of utilizing the ship exhaust gas. In addition, the engine power did not effect on the temperature of gases supplied to the fuel cell stack.

An inventory analysis on greenhouse gas emissions from bulk carrier and oil tanker (벌크선박과 유조선의 온실 가스 배출 인벤토리 분석)

  • Im, Nam-Kyun;Yi, Sung-Ryong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.189-194
    • /
    • 2010
  • As the seriousness of the global environment is gaining our attention recently, studies on application of LCA(Life Cycle Assessment) to ship are being carried out dynamically in various industrial fields. This study was carried out to examine the application of LCA to ships and was focused on the inventory analysis on global warming gas from merchant cargo ships. Two merchant cargo ships were adopted as ship models. Actual voyage data of at last several years was used to analysis the ship's exhaust gas inventory. The analysis shows how many weight of global warming gas being exhausted to transport 1 ton of each cargo per 1 nautical mile.

A Study on Estimating Ship's Emission in the Port Area of Mokpo Port (목포항 항만구역 내 선박 배기가스 배출량 산정에 대한 연구)

  • Bui, Hai-Dang;Kim, Hwayoung
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.3
    • /
    • pp.47-60
    • /
    • 2023
  • A thorough inventory of ship emissions, particularly ship's emission of in-port area is necessary to identify significant sources of exhaust gases such as NOx, SOx, PM, and CO2 and trends in emission levels over time, and reduce their serious effects on the environment and human health. Therefore, the goal of this study is to assess the volume of emissions from ships in Mokpo port, which serves as a gateway to the southwest coast of Korea, using a bottom-up methodology and data from the automatic identification system (AIS) and the Korean Port Management Information System (Port-MIS). In this work, an analysis of ship movement utilizing AIS data and an actual set of data on ship specification were gathered. By examining ship movement using AIS data, We also proposed a new approach for identifying cruising/maneuvering mode. Finally, the results were classified by ship operating mode, by exhaust gas, by ship type, and by berth, which provides a thorough and in-depth analysis of the air pollution caused by ships in Mokpo port.

Emission Prediction from Naval Ship Main Propulsive Diesel Engine under Steady Navigation (정속항해 시 함정 주 추진 디젤엔진의 배기가스 배출량 예측)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.788-793
    • /
    • 2012
  • This study was focused on the estimations of air pollutants, such as PM(Particulate matters), SOx(Sulfur Oxides), $CO_2$(Carbon diOxides) and NOx(Nitrogen Oxides), from a diesel propulsion engine installed on a naval vessel. Legislative and regulatory actions for exhaust emissions from ships are being strengthened in international communities and national governments to protect human health and the environment. In this context, various technologies have been developed from all of the nations of the world to meet strict standards. These regulations are based on commercial ship applications and according to size, but are not suitable for military naval vessels, which have much different engine operating conditions and hull architectures. Additionally, there is no international emission control system for military ships. Emission factors have been updated for commercial ship types from work at various research institutes; however, it is difficult to develop emission factors for military vessels because of their characteristics. In this paper, exhaust emissions from diesel engines installed on naval vessels under steady navigation condition were estimated with emission inventory methodology applied to ocean going vessels using fuel-based methods and fuel sulfur content analysis.

A Study on Atmospheric Dispersion Pattern of Ship Emissions - Focusing on Port of Busan (선박 배기가스의 대기확산 패턴에 관한 연구 - 부산항을 중심으로)

  • Lee, Min-Woo;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.1
    • /
    • pp.35-49
    • /
    • 2018
  • Busan Port handles more than 75% of the domestic freight volume and is ranked at 6th for global shipping in the world. This paper aims to estimate ship emission in North Port that is the center of Busan Port and located near the residential area. The emission for each type of ship is calculated applying a emission model proposed by U.S. EPA and the atmospheric diffusion pattern of the exhaust gas according to the season, the weather condition and the time was identified using CALPUFF Model. As a result, the major pollutants of $NO_x$, $SO_x$ and PM10 were 30,853 tons, 36,281 tons and 6,856 tons, respectively, and the highest rate was 42% in oil tankers. On clear days, air pollution was stagnant around the harbor, spread widely on windy days, and tended to be thinner on rainy days. The research contributes to recognizing the seriousness of air pollution and can be used as basic data for policy making in the future.

Estimation of Atmospheric Pollutant Emissions from Vessels in Major Harbor Cities in Korea and related Social Cost (국내 주요 항구도시의 선박 배기가스 배출량 산정 및 사회적 비용 추정)

  • Choi, Jung-kil;Kim, Myung-won;Lee, Hyo-jin;Kang, Tea-soon;Lee, Kang-wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.905-917
    • /
    • 2021
  • Atmospheric pollutant emissions, mainly exhaust gas emissions from vessels, and the resultant social costs of pollution in the Korean harbor cities of Incheon, Mokpo, Gwangyang, Busan and Ulsan, are examined in this study, and the need for an emissions reduction plan is highlighted. Busan had several vessels entering its port, while Mokpo had few vessels, yet the vessels emission contribution was high in both the cities. Ulsan had world-class heavy-chemical industries, Gwangyang had steel mills and Incheon had a manufacturing industry and more vessels entering its port than Mokpo, yet the emission contribution was low in these cities. By calculating exhaust gas emissions from the vessels, it was found that CO2 was the highest, followed by NOx and SOx. By vessel type, Busan, Ulsan, and Incheon had more oil tank vessels, Gwangyang had more cargo vessels, and Mokpo had more ferries. As a result of social cost, Busan paid the highest, while the highest emission was PM. The use of low-sulfur oil can directly reduce PM and, SOx emissions and indirectly reduce NOx emissions. However, in order to reduce high CO2 emissions, only low-sulfur oil will not help. Therefore, the study suggested the need for reduction plan that use of fossil fuels, by using alternative maritime power (AMP).

A Optimization of the ORC for Ship's Power Generation System (해수 온도차를 이용한 선박의 ORC 발전 시스템 최적화)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.595-602
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC (Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation was performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. Various fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared. Finally, 2,400kW output power is obtained by system optimization of the preheater and reheater utilizing waste heat form sea water cooling system.

특집:녹색선박 SCR시스템 기술개발 현황 - 선박용 SCR 국내.외 현황 및 시장동향

  • Jeong, Gyeong-Yeol;Park, Chang-Dae;Im, Byeong-Ju;Bae, Jong-Uk
    • 기계와재료
    • /
    • v.24 no.2
    • /
    • pp.18-26
    • /
    • 2012
  • 지구 환경오염문제가 대두되면서 세계 각국에서는 환경오염을 최소화하려는 움직임이 활발히 이루어지고 있다. 국제해사기구(IMO)에서는 해양 대기오염의 상당량이 선박에서 배출되는 배기가스에 의한 것으로 판단하고 있으며, 이에 따라 선진국을 중심으로 선박관련 환경규제 및 선박 배기가스 배출기준을 점차적으로 강화해 가고 있고, 친환경 선박 및 기자재 개발을 적극적으로 진행하고 있다. 현재 선박에 적용 가능한 NOx 제거장치로는 ECR(Exhaust Gas Recirculation), SCR(Selective, Catalytic Reduction), SAM(Scavenge Air Moistening) 등이 개발되었으며, 연소온도 조절 및 촉매 환원반응 등을 이용하여 NOx를 제거하고 있다. 현재 개발된 탈질설비 중 현실적으로 가장 적합한 것은 SCR시스템으로 인식되고 있으나, 연료효율 감소로 인하여 가스연료를 이용하거나 새로운 연료개발 등 사용연료에 변화를 주는 방법들이 미래의 대안으로 제시되고 있다.

  • PDF