• Title/Summary/Keyword: 선박경사

Search Result 90, Processing Time 0.022 seconds

A Study on the Treatment Performance of Coalescer to Treat Exhaust Gas Cleaning Water (콜레이서를 이용한 배기가스 세정수 처리 성능에 관한 연구)

  • Ha, Shin-Young;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • This study was conducted on a circulation system which can recycle waste water from EGCS(Exhaust Gas Cleaning System) using a wet scrubber that is used to treat air pollutants from ships. Though we developed a water treatment system that could remove effectively particulate matters and dispersed oil included in cleaning water for Ship Exhaust Gas Recycle System(DePM & DeSOx), we found that it is difficult to treat minutely dispersed oil only by means of centrifugal-typed purifier. Therefore, to this system, we applied a coalescer that coalesces emulsified minute oil particles in the 2nd phase of dispersion state after being filtered through the centrifugal-typed purifier. After we treated cleaning water drained out of Ship Exhaust Gas Recycle System(DePM & DeSOx) by using both purifier and coalescer, we found that particulate matters and dispersed oil were removed more than 55% and 99%, respectively, in comparison with those contained in cleaning water influent. Putting the results together, we conclude that the treated cleaning water can be recycled as normal cleaning water if this cleaning water treatment system is employed by the wet cleaning tower system for the reduction of air pollutants from ships.

A General Formula for Calculating the Value of Transverse Moment of Inertia by Observing the Roll Motion of Ships (횡요상태 관측에 의한 선체 횡관성모멘트 값의 도출을 위한 일반식)

  • Choi, Soon-Man
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.538-542
    • /
    • 2015
  • The transverse moment of inertia is an indispensable factor in analyzing the roll motion characteristics of ships and the calculating method needs to be based on the more reasonable theories when deciding the value as the results and reliability of analysis could be much affected by the correctness. However, the mass distribution and shape of hulls are quite complicated and give much difficulties in case of calculating the value directly from the ship design data, furthermore even acquiring the detailed design data for calculation is almost impossible. Therefore some simpler ways are practically adopted in the assumption that the gyradius of roll moment can be decided by a given ratio and hull width. It is well known that the responses of the free roll decay are varied according to the value of roll moment in view of roll period and amplitude decay ratio, so that the general formula to get the moment value can be derived also from the observation of roll decay responses. This study presents how the roll period and decay ratio are interrelated each other from the roll motion characteristics with suggesting a general formula to be able to calculate roll moment from it. Finally, the obtained general formula has been applied to a ship data to check the resultant characteristics through analyzing graphs and showed that the roll moment becomes more accurate when rolling period and decay ratio are considered together in calculation.

Analysis of Decision-making Factors for Ship and Passenger Evacuation Using AHP (AHP 기법을 활용한 선박과 승객대피 의사결정 요인 분석)

  • Youn, Dong-Hyup;Shin, Il-Sik;Yim, Nam-Gyun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • When a ship accident occurs, it is imperative that the captain makes a prompt decision because the accident directly leads to the loss of human lives. The purpose of this study is to quantitatively analyze the main factors and to provide basic data for making decisions in case of ship related contingencies. Experts were surveyed using questionnaires containing eight main factors. The priorities based on relative importance of those factors were determined using the analytic hierarchy process (AHP). As a result, the main priority factors were capsizing (heeling occurs), and fire/explosion, which could have the greatest impact on decision making. We plan to do a larger, more detailed scale survey to improve the reliability of the results. The results above will be used as a basis for the main factors of ships and passenger evacuation decision-making procedures.

A Study for Real-time Data Collection and Application of DTW for Evaluation Ship Stability (선박 복원 성능 평가를 위한 실시간 데이터 수집 및 DTW 적용에 대한 연구)

  • Jeong-Hun Woo;Ho-June Seok;Seung Sim;Jun-Rae Cho;Deuk-Jae Cho;Jong-Hwa Baek;Jaeyong Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.206-207
    • /
    • 2023
  • Intelligent maritime traffic information services provide services for maritime traffic safety, but due to the difference in ship specifications and loading condition, the method of determining abnormalities in ship stability has not been generalized. In this study, we established a method for collecting and preprocessing Accelerometer and GPS data for calculating ship stability. In addition, we have researched a model that can determine the real-time ship stability through data science algorithms that can reflect each vessel specifications and external forces, breaking away from approximate calculations that cannot reflect weather factors in the real ocean.

  • PDF

비대칭 고속 쌍동선의 선미터널 입구영역 경사각 변화에 따른 유체역학적 특성 연구

  • Park, Geun-Hong;Lee, Gyeong-U;Seo, Gwang-Cheol;Kim, Sang-Won
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.218-219
    • /
    • 2018
  • 쌍동선형은 단동선형에 비해 안정성 및 저항성능이 우수하며 그 형상은 일반적으로 대칭 및 비대칭으로 구분한다. 이러한 쌍동선은 고속으로 운항하는 경우 선체사이의 파랑 중첩현상을 줄이기 위해 주로 비대칭선형을 사용한다. 또한, 중소형선박은 선미터널을 적용하여 추력효율을 향상시킨다. 본 연구에서는 비대칭 고속 쌍동선의 선미터널 입구영역의 경사각 변화에 따른 유체역학적 특성(저항성능, 항주자세, 압력분포)에 대한 수치해석 연구를 수행하였다. 수치해석은 상용프로그램 STAR CCM+를 이용하였다.

  • PDF

The Prediction of Stratified Flow Pattern in a Variable Tube Inclinations and Gravity Conditions (다양한 배관 경사각도 및 중력조건에서의 층상류 유동양식 예측)

  • Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.339-345
    • /
    • 2008
  • The stratified flow can be seen in the oil and gas pipelines as well as pipelines related to ship's fluid machineries. Numerous theories and correlations have also been proposed in the past for the prediction of stratified flow in horizontal or slightly inclined pipe. The previous researches are mostly about the effects of physical properties, viscosity, phases densities and pipe geometries on the stratified flow. Very few study outcomes exist on the effect of gravity magnitude and large slop angle of pipe inclinations on the occurring condition of stratified flow. In this study, therefore, analytical procedures were conducted about the effect of both the change in the gravity magnitude and pipe inclinations on the stratified flow occurring conditions. From the analytical results, it was found that stratified flow occurred at the vertical upward inclination and at very low liquid phase flowrates in 0.17g and 0.33g conditions.

  • PDF

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

유조선 우이산호 사고를 통한 선속제어와 예선 활용 방안

  • 정창현;김득봉;박영수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.155-155
    • /
    • 2022
  • 유조선 우이산호 부두시설 접촉사고는 광양항 원유 2부두에 접근 중 과도한 속력 등 도선사의 부적절한 도선으로 좌회두를 적절하게 통제하지 못해 발생한 사고이다. 광양항 원유 2부두에 접안하고자 하는 VLCC는 부두 법선을 감안하여 약 10도 이내의 경사각으로 서서히 속력을 감속하면서 부두 전면 해상으로 접근하여 부두로부터 선폭의 약 2~3배 거리에 정선시킨 다음 예선의 도움을 받아 접안 예정 선박을 횡방향으로 5~10 cm/s 속도로 평행 이동시켜 부두에 계류시키는 것이 통상적인 접안 방법이다. 하지만, 우이산호의 부두 접근 시 속력을 살펴보면, 부두 1마일 전에서 8.4노트, 부두 0.5마일 전에서 7.1노트, 그리고 부두 0.2마일 전에서 5.2노트로 정상적인 타 선박의 속력보다 2~3배 빠른 속력으로 부두에 접근하면서 예선을 사용하였음에도 속력제어에 실패하여 부두와 접촉한 사고이다.

  • PDF

신형 중간피복용 블럭의 개발(1)

  • 권혁민;이달수
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1998.09a
    • /
    • pp.138-142
    • /
    • 1998
  • 연안 구조물의 대표적인 형식인 경사식 방파제 또는 호안의 축조시에 이형블럭을 전면에 피복하여 사석부의 제체를 보호하는 형태가 널리 채택되고 있다. 이러한 연안 구조물의 축조 형식은 오랜 경험 및 피복용 이형블럭의 고안과 더불어 변형, 발전된 공법이다. 최근 물동량의 증가 및 선박의 대형화 등으로 인해 기존 항만의 확장시에 대수심 쪽으로 전진, 배치되는 추세에 있으므로 대파랑에 대응하기 위한 피복재의 중량 증가가 예상된다. (중략)

  • PDF

A Study on Analysis of Moored Ship Motion Considering Harbor Resonance (항만공진현상을 고려한 계류선박의 동요 해석에 관한 연구)

  • Kwak, Moon Su;Moon, Yong Ho;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.595-608
    • /
    • 2013
  • This paper is proposed the computation method of moored ship motion considering harbor resonance, and estimated that the harbor resonance have an effect on moored ship motion. The computation of harbor resonance was used CGWAVE model and the computation of moored sip motion was used the Green function method expressed by three dimensions. This method was verified with the field observation data of moored ship motion, and the application of actual harbor was investigated with wave field data and down time record data in Pohang New Harbor. The resonance periods in Pohang New Harbor that obtained from wave field data were 80, 33, 23, 8 minute, which are the long waves, and 42, 54, 60 second, which are the infra-gravity waves inside harbor slip. The simulated results of harbor resonance were corresponded with the wave field data. This study was investigated on 5,000 ton, 10,000 ton and 30,000 ton ship sized in Pier 8 of Pohang New Harbor that the harbor resonance has effect on moored ship motion from simulated results of ship motion in case of included resonance and excluded resonance. In case of included resonance, the ship motion have increased by 12~400 percent when compared with results of excluded resonance. We could find that the harbor resonance have still more an effect on the surge and heave motions of a large size ship and the roll and yaw motions of a small size ship.