Processing math: 100%
  • Title/Summary/Keyword: 선박거동

Search Result 239, Processing Time 0.098 seconds

Parametric Study on Buckling Behavior of Longitudinally Stiffened Curved Panels by Closed-section Ribs (폐단면리브로 보강된 곡판의 국부판좌굴에 관한 변수해석적 연구)

  • Andico, Arriane Nicole P.;Kwak, Jae-Young;Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.714-721
    • /
    • 2018
  • In this study, we investigate a design technology intended to radically increase the buckling strength of vertically curved panels. Recent studies proposed a buckling strength formula which properly reflects the effect on the local plate buckling strength of flat plates when they are stiffened by closed section ribs. Herein, we attempted to quantitatively evaluate this effect on curved panels and to reveal the correlations with the design parameters. The commercial finite element software, ABAQUS, was used to build a three dimensional numerical model and numerical parametric studies were conducted to evaluate the variation of the buckling strength. In the case of flat panels, the local buckling strength of stiffened curved panels increases proportionally with increasing rotational stiffness of the closed-section ribs. After attaining a limiting value, an obvious tendency was found that the local buckling strength of the stiffened curved panel would converge towards a fixed value when the panels are supported along both sides. The parametric studies performed using the influential design parameters confirmed that the estimated partially-restrained curved panel strength is well correlated with the proposed formula.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.515-522
    • /
    • 2005
  • The ship plating is generally subjected to. combined in-plane load and lateral pressure loads, In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to. water pressure and cargo. These load components are nat always applied simultaneously, but mare than one can normally exist and interact. Hence, far mare rational and safe design of ship structures, it is af crucial importance to. better understand the interaction relationship af the buckling and ultimate strength far ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except far the impact load due to. slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to. the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Jun-Kyo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.61-67
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull ginder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are inverstigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Comparative Evaluation on the Corrosion Resistance of Galvalume and Galvanized Steel Pipe (갈바륨 강관과 용융아연도금 강관의 내식성 비교 평가)

  • Choe, In-Hye;Park, Jun-Mu;Lee, Chan-Sik;Mun, Gyeong-Man;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.163-163
    • /
    • 2016
  • 아연계 도금 강판은 우수한 내식성을 가지며 특히 아연의 희생방식기구에 의해 철의 부식을 억제하므로 선박, 건축자재, 전자기기 및 자동차 등 다양한 분야에서 그 수요와 사용범위가 증가하고 있다. 또한 도금 조성비 변화 및 다양한 표면처리 방법을 통해 가혹한 환경에서의 우수한 내식성에 대한 연구가 활발히 진행되고 있다. 그 중 갈바륨(Galvalume)은 55%의 알루미늄(Al)과 45%의 아연(Zn)으로 되어 있으며, 아연의 장점인 희생방식성과 내알카리성, 알루미늄의 장점인 내구성과 내열성, 내산성을 이상적으로 결합시킨 알루미늄(Al)-아연(Zn) 고내식 합금용융도금강판이다. 본 연구에서는 갈바륨 소재를 여러 산업현장에서 강관 형태로 사용할 경우의 내식성을 파악하기 위해 갈바륨 강관과 기존에 사용되고 있는 용융도금재인 용융아연도금 강관을 비교하며 실험을 진행하였다. 냉간압연강관에 용융아연도금 약 25μm, 갈바륨 약 20μm 두께로 제작된 강관을 사용하였으며 제작된 도금층 표면 모폴로지는 SEM을 통해 관찰하였고, XRD 분석을 통해 결정 구조를 확인하였다. 또한 5% 염수분무 환경 중 노출시험(Salt spray test), 3% NaCl 용액에서의 자연침지 시험 및 3% NaCl 용액 중 전기화학적 양극분극 시험을 진행하여 평가하였다. 5% NaCl 환경에서의 염수분무 시험 결과 용융아연도금의 경우 단면에서는 90시간, 표면에서는 260시간 경과 후 적청이 발생하였다. 반면, 갈바륨의 경우에는 단면에서 210시간 경과 후에 적청이 발생하였고, 표면의 경우에는 900시간 이상에서도 적청이 발생하지 않았다. 이 결과를 통해 용융아연도금에 비해 갈바륨 도금의 내식성이 단면에서는 3배, 표면에서는 4~5배 이상 향상된 것으로 확인되었다. 또한 3% NaCl 용액 중 자연침지 시험 결과 용융아연도금 강관 표면은 24시간 경과 후 열화부를 중심으로 흑변하는 것을 확인할 수 있었으나 갈바륨의 경우에는 900시간 이상 실험이 진행되는 동안 No Scribe 및 Scribe 시편 모두 외관상 변화가 거의 없었다. 단면의 경우, 용융아연도금 시편은 900시간 이상 실험이 진행되는 동안 외관상 변화가 없었으며, 갈바륨 시편의 경우 300시간 경과 하면서 흰색의 아연 부식생성물이 나타났으나 900시간 이후로도 적청은 발생하지 않았다. 자연전위 측정결과 용융아연도금 및 갈바륨 시편 모두 유사한 전위거동을 나타냈지만 단면의 경우 갈바륨 시편이 용융아연도금에 비해 안정적인 거동을 보였다. 3% NaCl 용액 중 전기화학적 양극 분극 시험 결과 용융아연도금이 갈바륨에 비해 귀한 방향의 부식 전위 값을 나타냈으며, 부식 전류밀도도 용융아연도금이 갈바륨에 비해 더 높은 값을 나타내는 것을 확인할 수 있었다. 이상의 염수분무시험, 자연침지시험 및 전기화학적 양극분극시험을 통해 종합적으로 분석-고찰하여 보면, 그 부식이 진행되는 과정은 융융아연도금과 달리 갈바륨 도금의 경우가 다단계적인 부식 과정을 거치면서 우수한 내식 특성을 나타낸다는 것을 알 수 있었다. 즉, 갈바륨 도금은 그 도금 막에 분포된 합금상 원소 성분들이 상호 갈바닉(Galvanic) 작용하며 형성된 부식생성물이 수평적으로 자체 차단(Barrier) 역할을 하는 과정과 부분적 부식-회복 과정을 거치면서 다단계적으로 부식속도를 감소시키게 된다는 것을 확인 할 수 있었다.

  • PDF

In-Plane Extensional Vibration Analysis of Asymmetric Curved Beams with Linearly Varying Cross-Section Using DQM (미분구적법(DQM)을 이용한 단면적이 선형적으로 변하는 비대칭 곡선보의 내평면 신장 진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2019
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have traditionally been obtained by the standard finite difference. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method(DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In this study, the in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results are compared with the result by other methods for cases in which they are available. According to the analysis of the solutions, the DQM, used only a limited number of grid points, gives results which agree very well with the exact ones.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.

A Study on the Frictional Characteristics of Fiber Reinforced Composites under Corrosive Environment (부식 환경 하에서의 섬유강화복합재료의 마찰 및 마모 특성 연구)

  • Choong-Yong Park;Dong-Hyun Park;Soo-Jeong Park;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.37-41
    • /
    • 2023
  • The treated water inside the ballast electrolytic cell creates a highly alkaline atmosphere due to hydroxide generated at the DSA(Dimension Stable Anode) electrode during electrolysis. In this study, a composite material that can replace the weakness of the PE-coated steel pipe used in the existing ballast pipe was prepared. The test samples are BRE(Basalt fiber reinforced epoxy), BRP(Basalt fiber reinforced unsaturated polyester), GRE(Glass fiber reinforced epoxy), and GRP(Glass fiber reinforced unsaturated polyester). And then it was immersed in NaOH for 720 hours. The friction test of each specimen was conducted. The Friction coefficient analysis according to material friction depth and interfacial adhesion behavior between resin and fiber were analyzed. As a result, the mechanism of interfacial separation between resin and fiber could be analyzed. In the case of the unsaturated polyester resin with low interfacial bonding strength the longer the immersion time in the alkaline solution, the faster the internal deterioration caused by the deterioration that started from the surface, resulting in a decrease in the friction coefficient. It is hoped that this study will help to understand the degradation behavior of composite materials immersed in various chemical solutions such as NaOH, acid, and sodium hypochlorite in the future.

A Study on Rotary Bending Fatigue Strength of the CO2 Gas Welded Joint in Air and Sea Water ([CO2] 용접이음재의 대기 및 해수중에서의 회전굽힘 피로강도에 관한 연구)

  • S.W. Kang;S.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-126
    • /
    • 2000
  • TMCP steel has been widely used to construct ships and offshore structures. When it comes to ship and offshore structures, corrosion fatigue damages caused by sea water and fatigue occurred by wave-induced forces usually go on occurring simultaneously. So the fatigue life in corrosion environment is decreased markedly in comparison with that in air. The fatigue crack in corrosion easily initiates on welded joints of structure like as the fatigue crack in air. Therefore it is very important to study the fatigue properties of those of their welded joints as well as steel plates. In this study, rotary bending fatigue tests have been performed to investigate fatigue crack initiation and behavior of fatigue crack growth on CO2 gas weld HAZ of TMCP steel. The fatigue test used the specimens with various stress concentration factors in air and 3% NaCl solution

  • PDF

Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature (니켈기 초내열합금 IN738LC의 고온 저주기피로 거동)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Yoo, Keun-Bong;Lee, Han-Sang;Yoo, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1403-1409
    • /
    • 2010
  • For many years, high-strength nickel-base superalloys have been used to manufacture turbine blades because of their excellent performance at high temperatures. The prediction of fatigue life of superalloys is important for improving the efficiency of the turbine blades. In this study, low cycle fatigue tests are performed for different values of total strain and temperature. The relations between strain energy density and number of cycles before failure occurs are examined in order to predict the low cycle fatigue life of IN738LC super alloy. The results of low cycle fatigue lives predicted by strain energy methods are found to coincide with experimental data and with the results obtained by the Coffin-Manson method.

Higher Order Spectral Analysis of Non-linear Pitching Motion (고차스펙트럼을 이용한 선체 종동요의 비선형적 거동에 관한 해석)

  • Kang, Byung-Ho;Carlos, Miguel Mejia;Kim, Tae-Ho;Park, Jun-Mo;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • The estimation of non-linear ship motion is one of the most important issues in recent studies of ship stability. In this paper, bispectral analysis and bicoherence analysis were introduced in order to analyze the non-linear ship motion. In addition to the previously observed non-linear pitching motion in following seas, this study observed the non-linear phase coupling of pitching motion in following & quartering seas, and starboard beam seas. By comparing phase coupling between each frequency quantitatively via the bicoherence analysis, it was confirmed that non-linear phase coupling was much stronger in frequency regions other than the peak frequencies of a power spectrum. Furthermore, it was found out that the results of bicoherence calculation were analagous to each other, although the different normalization methods were applied.