• Title/Summary/Keyword: 선미관 베어링

Search Result 19, Processing Time 0.029 seconds

A Study on the Forced Fitting Method of Stern Tube Bearing for Propulsion Shafting in Ships (선박 추진축계 선미관 베어링의 강제 압입 피팅 방식에 관한 연구)

  • Cho, Kwon-Hae;Lee, Jae-Hyun;Kim, Yang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.653-660
    • /
    • 2010
  • The stern tube bearing is installed to the stern tube and stern boss casting by using the method of the force pressured fitting. The adequate value of the interference between the stern tube bearing and casting should be considered owing to the slip. In this study, to review and compare the fitting force and the contact pressure, the theory of thick walled cylinder is considered to clarify the formula which received from the maker. Also the fitting force and contact pressure are calculated by using the standard value of interference, Young's modulus, Poisson's ratio and friction coefficient.

The Effect of Transient Eccentric Propeller Forces on Shaft Behavior Measured Using the Strain Gauge Method During Starboard Turning of a 4,700 DWT Ship (스트레인 게이지법을 이용한 4,700 DWT 선박의 우현 전타시 프로펠러 편심추력이 축 거동에 미치는 영향 연구)

  • Lee, Jae-ung;Kim, Hong-Ryeol;Rim, Geung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.482-488
    • /
    • 2018
  • Generally, after stern tube bearing shows a significant increase in local load due to propeller load, which increases the potential adverse effects of bearing failure. To prevent this, research on regarding shaft alignment has been carried out with a focus on reducing the relative slope between the shaft and support bearing(s) under quasi-static conditions. However, for a more detailed evaluation of a shafting system, it is necessary to consider dynamic conditions. In this context, the results revealed that eccentric propeller force under transient conditions such as a rapid rudder turn at NCR, lead to fluid-induced instability and imbalanced vibration in the stern tube. In addition, compared with NCR condition, it has been confirmed that eccentric propeller forces given a rapid rudder starboard turn can lift a shaft from the stern tube bearing in the stern tube, contributes to load relief for the stern tube bearing.

A Study on Optimum Shaft Alignment Analysis for VLCC (VLCC의 최적 축계정렬해석 연구)

  • Kim Hyu Chang;Kim Jun Gi
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.134-137
    • /
    • 2005
  • Recently, in VLCC, shafting system is stiffer due to large engine power whereas hull structure is more flexible due to scantling optimization, which can be suffered from alignment damage by incompatibility between shafting and hull, In this study, shafting system without stern tube forward bush was adapted for less sensitive system against external factors. Also, shaft alignment analysis was considered with hull deflection at various ship loading conditions and stern tube after bush of long journal bearing was evaluated by static squeezing pressure and dynamic oil film pressure with sloping control. Whirling vibration was also reviewed to avoid resonance with propeller blade order. So, reliable shafting design for VLCC could be achieved through optimized alignment analysis for the system without stern tube forward bush.

  • PDF

Quasi-Static Equilibrium of a Propeller Shaft in a Hydrodynamic Oil-Lubricated Stern Tube Bearing (윤활유(潤滑油) 선미관(船尾管) 베어링 축계(軸系)의 준정적(準靜的) 평형상태(平衡狀態)에 관한 연구(硏究))

  • S.Y.,Ahn;S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.51-61
    • /
    • 1989
  • Recently, the growth in the propulsion power and propeller size of typical energy saving ships has resulted in severe damages of the oil-lubricated stern tube bearing. Consequently, a more rational analytical method for the design of the shafting system is required. In this paper an analytical method applicable to the design of the oil-lubricated stern tube bearing and shafting system is presented. The method consists of the finite element analysis of the shafting system and the oil film hydrodynamics. The shafting system is modeled as a three-dimensional problem using beam elements taking account for the steady components of thrust, lateral forces and moments of the propeller as well as the elastic foundation effects. The oil film hydrodynamics is modeled as a two-dimensional problem. Equal and retangular elements employing hourglass control method are used for the construction of the oil film fluidity matrix. To search the quasi-static equilibrium position between the propeller shaft and the oil film, an optimization technique is employed. Some numerical results based on the proposed method are compared with some measured and numerical data available. They show acceptable agreements with the data.

  • PDF

A Study on Flexibility Acquisition Method for VLCC Shaft System (VLCC 축계 시스템의 유연성 확보 방안에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.135-139
    • /
    • 2017
  • The main reason for heat accidents occurring at the after stern tube bearing (STB) is excessive local pressure caused by the deflection of the propulsion shaft due to propeller loads. The probability of a heat accident is increased by the low flexibility of the shaft system in very large crude oil carriers (VLCCs) as the engine power and shaft diameter increase and the distance decreases between the forward and after STBs. This study proposed shaft system with only an after STB and no forward STB for a flexibility acquisition method for a VLCC shaft system under hull deformation. A Hertzian contact condition was applied, which assumes a half-elliptical pressure distribution along the contact width for the calculation of the local squeeze pressure. The propeller loads, heat effect, and hull deflection under engine operating conditions are also considered. The results show that the required design criteria were satisfied by building a partial slope at the white metal, which is the material at the axial contact side in the after STB. This system could reduce building cost by simplification of the shaft system.

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System (프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구)

  • Lee, Ji-woong;Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1082-1087
    • /
    • 2021
  • The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.

A Study on Designing an Effective Support Point for After-Stern Tube Bearings Concerning Shaft Alignment (추진축계 정렬시 선미관 베어링 유효지지점 설정에 관한 연구)

  • Lee, Jae-ung;Kim, Yeonwon;Kim, Jung-Ryul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.803-809
    • /
    • 2018
  • Generally, the gap-and-sag method is used in the shipbuilding stage before coupling the shafts to check whether they are installed at the same position as designed and derived from shaft alignment calculation. The primary installed propeller shaft becomes a reference point, the position of the remaining shafts are sequentially determined through the gap-and-sag value derived from the deflection and deflection angle at each shaft flange by own weight. If the reference point varies against the design value, it would have a series of effects on the installation of the remaining shafts. Moreover, after coupling the shafts, even if the bearing reaction forces derived from measurement are satisfied by the allowable limit range, consequently it might have an adverse effect on the stability of the shafting system by not being able to estimate the relative slope angle between the propeller shaft and the after-stern tube bearing. In this paper, to deal with above-mentioned phenomenon, the theoretical calculations related to designing an effective support point of the aft stern tube bearing and analysis by measurement is conducted through a case of open-up inspections. Based on this, a shaft installation guideline is proposed to minimize the misalignment related to preventing wiping damage of the after-stern tube bearing.

Verification of Effective Support Points of Stern Tube Bearing Using Nonlinear Elastic Multi-Support Bearing Elements (비선형 탄성 다점지지 베어링 요소를 이용한 선미관 베어링의 유효지지점 검증)

  • Choung, Joon-Mo;Choe, Ick-Heung;Kim, Kyu-Chang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.479-486
    • /
    • 2005
  • The final goal of shift alignment design is that the bearing reaction forces or mean pressures are within design boundaries for various service conditions of a ship. However, it is found that calculated bearing load can be substantially variable according to the locations of the effective support points of after sterntube bearing which are determined by simple calculation or assumption suggested by classification societies. A new analysis method for shaft alignment calculation is introduced in order to resolve these problems. Key concept of the new method is featured by adopting both nonlinear elastic and multi-support elements to simulate a bearing support Hertz contact theory is basically applied for nonlinear elastic stiffness calculation instead of the projected area method suggested by most of classification societies. Three loading conditions according to the bearing offset and the hydrodynamic moment and twelve models according to the locations of the effective support points of sterntube bearings are prepared to carry out quantitative verifications for an actual shafting system of 8000 TEU class container vessel. It is found that there is relatively large difference between assumed and calculated effective support points.

A case study on the optimal shafting alignment concerning bearing stiffness for 10,100 TEU container carrier (베어링 강성을 고려한 10,100 TEU 컨테이너 운반선의 최적 추진축계 배치에 관한 사례 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Damages of the main engine aftmost bearing and the after stern tube bearing tend to increase due to misalignment. And as the shafting system becomes stiffer due to the large engine power, whereas the hull structure becomes more flexible due to optimization by using high tensile thin steel plates. And this is the reason that more sophisticated shaft alignments are required. In this study, the optimum shafting alignment calculation was carried out, considering the thermal expansion effect, exploiting the sensitivity index, which indicates the reasonable position of forward intermediate shaft bearing for shaft alignment. and as the main subject in this study, the elastic deformation on intermediate shaft and main engine bearings occurred by vertical load of shaft mass were examined thoroughly and analyzed allowable load of bearings, reaction influence numbers of all bearings. As the result, a reliable optimum shafting alignment was derived theoretically. To verify these results, they were referred to the engine maker's technical information of main engine installation and being used shafting alignment programs of both Korean Register of Shipping and Det Norske Veritas, their reliability were reviewed.