• Title/Summary/Keyword: 선량조절

Search Result 306, Processing Time 0.032 seconds

Quality Assurance of Intensity Modulated Radiation Therapy: Site-Specific Results of Eulji University Hospital (질환별 세기조절방사선치료의 정도관리: 을지대학병원 임상결과)

  • Kim, Sung-Jin;Lee, Mi-Jo;Youn, Seon-Min
    • Radiation Oncology Journal
    • /
    • v.29 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Purpose: To analyze our quality assurance (QA) data for intensity modulated radiation therapy (IMRT) according to treatment site and to possibly improve QA for IMRT in Hospital. Materials and Methods: We performed QA on 50 patients (head and neck, 28 patients; Breast, 14 patients; Pelvis, 8 patients) for IMRT. The calculated dose from RTP was compared with the measured value film, gamma index, and ionization chamber for dose measurement in each case. Results: The point dose measurement results in 45 of 50 patients showed good agreement with the calculation dose (${\pm}3%$). The largest error measured thus far has been 3.60%, with a mean of only -0.17% (SD, 2.25%). Each treatment site showed an error rate of -0.13% (SD, 1.93%) for head and neck cases, -0.26% (SD, 2.79%) for breast cases, and 0.24% (SD, 2.44%) for pelvis cases. The gamma index verified with the error rate of head and neck cases (6%), breast (10%), and pelvis (6%), which corresponded to a tolerance of 3 mm (3% for the head and neck, 2%, for the breast 1% for the pelvis, and 0% in the region where the isodose curve was greater than 90%. Conclusion: We recognize the cause of errors for each treatment site of IMRT QA and so we maximize our efforts to reduce error and increase accuracy.

The Investigation Regarding the Dose Change due to the Heterogeneity of Prostate Cancer Treatment with IMRT (전립선암의 세기조절 방사선치료 시 불균질부에 의한 선량변화에 관한 고찰)

  • Yoon, Il-Kyu;Park, Jang-Pil;Lee, Jae-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • Purpose: The pelvic phantom was fabricated in the following purposes: (1) Dose verification of IMRT plan using Eclipse planning computer, (2) to study the interface effect at the interface between rectal wall and air. The TLD can be inserted in the pelvic phantom to confirm the dose distribution as well as uncertainty at the interface. Materials and Methods: A pelvic phantom with the dimension of 30 cm diameter, 20 cm height and 20 cm thickness was fabricated to investigate the dose at the rectal wall. The phantom was filled with water and has many features like bladder, rectum, and prostate and seminal vesicle (SV). The rectum is made of 3 cm-dimater plastic pipe, and it cab be blocked by using a plug, and film can be inserted around the rectal wall. The phantom was scanned with Philips Brillance scanner and various organs such as prostate, SV, and rectal wall, and bladder wall were delineated. The treatment parameters used in this study are the same as those used in the protocols in the SNUH. TLD chips are inserted to the phantom to evaluate the dose distribution to the rectal wall (to simulate high dose gradient region), bladder wall and SV (to simulate the high dose region) and 2 spots in anterior surface (to simulate the low dose region). The TLD readings are compared with those of the planning computer (ECLIPSE, Varian, USA). Results: The target TLD doses represented as the prostate and SV show excellent agreements with the doses from the RTP within +/-3%. The rectal wall doses measured at the rectal wall are different from the those of the RTP by -11%. This is in literatures called as an interface effect. The underdosages at the rectal wall is independent of 3 heterogeneity correction algorithm in the Eclipse RTP. Also the low dose regions s represented as surface in this study were within +/-1%. Conclusion: The RTP estimate the dosage very accurately withihn +/-3% in the high dose (SV, or prostate) and low dose region (surface). However, the dosage at the rectal wall differed by as much as 11% (In literatures, the underdosage of 9$\sim$15% were reported). This range of errors occurs at the interface, for example, at the interface between lung and chest wall, or vocal cord. This interface effect is very important in clinical situations, for example, to estimate the NTCP (normal tissue complication probability) and to estimate the limitations of the current RTP system. Monte-carlo-based RTP will handle this issue correctly.

  • PDF

The Output Factor of Small Field in Multileaf Collimator of 6 MV Photon Beams (다엽제한기 소조사면의 6 MV 광자선 출력선량계수)

  • Lee, Ho Joon;Choi, Tae-Jin;Oh, Young Kee;Jeun, Kyung Soo;Lee, Yong Hee;Kim, Jin Hee;Kim, Ok Bae;Oh, Se An;Kim, Sung Kyu;Ye, Ji Woon
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • The IMRT is proper implement to get high dose deliver to tumor as its shape and selective approach in radiation therapy. Since the IMRT is performed as modulated the radiation fluence by the MLC created the open shapes and its irradiation time, the dose of segment of radiation field effects on the cumulated portal dose. The accurate output factor of small and step shape of segment is important to improve the determination of deliver tumor dose as it is directly proportional to dose. This experiment performed with the 6 MV photon beam of Clinac Ex(Varian) from $3{\times}3cm^2$ to $0.5{\times}0.5cm^2$ small field size for collimator jaw in MLC free and/or for MLC open field in fixed collimator jaw $10{\times}10cm^2$ using the CC01 ion chamber, SFD diode, diamond detector and X-Omat film dosimetry. As results of normalized to the reference field of $10{\times}10cm^2$ of MLC, the output factor of $3{\times}3cm^2$ showed $0.899{\pm}0.0106$, $0.855{\pm}0.0106$ for $2{\times}2cm^2$, $0.764{\pm}0.0082$ for $1{\times}1cm^2$ and $0.602{\pm}0.0399$ for $0.5{\times}0.5cm^2$. The output factor of MLC open field has shown a maximum 3.8% higher than that of the collimator jaw open field.

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.

Feasibility Study of the Real-Time IMRT Dosimetry Using a Scintillation Screen (고감도 형광판을 이용한 실시간 선량측정 가능성 연구)

  • Lim Sang Wook;Yi Byong Yong;Ko Young Eun;Ji Young Hoon;Kim Jong Hoon;Ahn Seung Do;Lee Sang Wook;Shin Seong Soo;Kwon Soo-Il;Choi Eun Kyoung
    • Radiation Oncology Journal
    • /
    • v.22 no.1
    • /
    • pp.64-68
    • /
    • 2004
  • Purpose : To study the feasibility of verifying real-time 2-D dose distribution measurement system with the scintillation screen for the quality assurance. Materials and Methods : The water phantom consisted of a scintillation screen (LANEX fast screen, Kodak, USA) that was axially located in the middle of an acrylic cylinder with a diameter of 25 cm. The charge-coupled device (CCD) camera was attached to the phantom In order to capture the visible light from the scintillation screen. To observe the dose distribution In real time, the intensity of the light from the scintillator was converted to a dosage. The isodose contours of the calculations from RTP and those of the measurements using the scintillation screen were compared for the arc therapy and the Intensity modulated radiation therapy (IMRT). Results : The kernel, expressed as a multiplication of two error functions, was obtained in order to correct the sensitivity of the CCD of the camera and the scintillation screen. When comparing the calculated isodose and measured isodose, a discrepancy of less than 8 mm in the high dose region was observed. Conclusion : Using the 2-D dosimetry system, the relationship between the light and the dosage could be found, and real-time verification of the dose distribution was feasible.

Changes in Exposure Dose and Image Quality due to Radiation Shielding in Pediatric Patients (소아 환자에서 방사선 차폐체로 인한 피폭선량과 화질의 변화)

  • Lee, Young-Hee;Lee, Yong-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.931-936
    • /
    • 2020
  • This study was conducted to observe the changes in radiation exposure dose and image quality of pediatric patients according to the presence and size of the gonadal shield when using the AEC system. X-ray equipment was used to measure the radiation exposure dose in the abdominal and gonads of the pediatric phantom when no shielding body was used and when three different sizes of shielding body were used, and SNR and CNR were measured through the obtained images. As a result of the study, the radiation exposure dose to the gonads decreased in proportion to the size of the radiation shield, but the radiation exposure dose to the abdomen was rather increased, and the image quality did not change. It is recommended to use a shield with a size optimized for the age, weight, and body size of the pediatric patient so as not to be overexposed by the increased radiation due to the radiation shield due to the use of the AEC System. For this purpose, information about the pediatric patient with the nurse It is believed that exchange is necessary.

Comparison of Intensity Modulated Radiation Therapy Dose Calculations with a PBC and AAA Algorithms in the Lung Cancer (폐암의 세기조절방사선치료에서 PBC 알고리즘과 AAA 알고리즘의 비교연구)

  • Oh, Se-An;Kang, Min-Kyu;Yea, Ji-Woon;Kim, Sung-Hoon;Kim, Ki-Hwan;Kim, Sung-Kyu
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2012
  • The pencil beam convolution (PBC) algorithms in radiation treatment planning system have been widely used to calculate the radiation dose. A new photon dose calculation algorithm, referred to as the anisotropic analytical algorithm (AAA), was released for use by the Varian medical system. The aim of this paper was to investigate the difference in dose calculation between the AAA and PBC algorithm using the intensity modulated radiation therapy (IMRT) plan for lung cancer cases that were inhomogeneous in the low density. We quantitatively analyzed the differences in dose using the eclipse planning system (Varian Medical System, Palo Alto, CA) and I'mRT matirxx (IBA, Schwarzenbruck, Germany) equipment to compare the gamma evaluation. 11 patients with lung cancer at various sites were used in this study. We also used the TLD-100 (LiF) to measure the differences in dose between the calculated dose and measured dose in the Alderson Rando phantom. The maximum, mean, minimum dose for the normal tissue did not change significantly. But the volume of the PTV covered by the 95% isodose curve was decreased by 6% in the lung due to the difference in the algorithms. The difference dose between the calculated dose by the PBC algorithms and AAA algorithms and the measured dose with TLD-100 (LiF) in the Alderson Rando phantom was -4.6% and -2.7% respectively. Based on the results of this study, the treatment plan calculated using the AAA algorithms is more accurate in lung sites with a low density when compared to the treatment plan calculated using the PBC algorithms.

Error Analysis of Delivered Dose Reconstruction Using Cone-beam CT and MLC Log Data (콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석)

  • Cheong, Kwang-Ho;Park, So-Ah;Kang, Sei-Kwon;Hwang, Tae-Jin;Lee, Me-Yeon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.332-339
    • /
    • 2010
  • We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.

Dose Evaluation of TPS according to Treatment Sites in IMRT (세기조절방사선치료 시 치료 부위에 따른 치료계획 시스템 간 선량평가)

  • Kim, Jin Man;Kim, Jong Sik;Hong, Chae Seon;Park, Ju Young;Park, Su Yeon;Ju, Sang Gyu
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • Purpose: This study executed therapy plans on prostate cancer (homogeneous density area) and lung cancer (non-homogeneous density area) using radiation treatment planning systems such as $Pinnacle^3$ (version 9.2, Philips Medical Systems, USA) and Eclipse (version 10.0, Varian Medical Systems, USA) in order to quantify the difference between dose calculation according to density in IMRT. Materials and Methods: The subjects were prostate cancer patients (n=5) and lung cancer patients (n=5) who had therapies in our hospital. Identical constraints and optimization process according to the Protocol were administered on the subjects. For the therapy plan of prostate cancer patients, 10 MV and 7Beam were used and 2.5 Gy was prescribed in 28 fx to make 70 Gy in total. For lung cancer patients, 6 MV and 6Beam were used and 2 Gy was prescribed in 33 fx to make 66 Gy in total. Through two therapy planning systems, maximum dose, average dose, and minimum dose of OAR (Organ at Risk) of CTV, PTV and around tumor were investigated. Results: In prostate cancer, both therapy planning systems showed within 2% change of dose of CTV and PTV and normal organs (Bladder, Both femur and Rectum out) near the tumor satisfied the dose constraints. In lung cancer, CTV and PTV showed less than 2% changes in dose and normal organs (Esophagus, Spinal cord and Both lungs) satisfied dose restrictions. However, the minimum dose of Eclipse therapy plan was 1.9% higher in CTV and 3.5% higher in PTV, and in case of both lungs there was 3.0% difference at V5 Gy. Conclusion: Each TPS according to the density satisfied dose limits of our hospital proving the clinical accuracy. It is considered more accurate and precise therapy plan can be made if studies on treatment planning for diverse parts and the application of such TPS are made.

  • PDF