• 제목/요약/키워드: 선량보정인자

검색결과 48건 처리시간 0.026초

원전 증기발생기 수실 내 에너지 스펙트럼을 고려한 MOSFET 방사선검출기 선량보정인자 결정에 관한 몬테칼로 전산모사 연구 (Monte Carlo Study of MOSFET Dosimeter Dose Correction Factors Considering Energy Spectrum of Radiation Field in a Steam Generator Channel Head)

  • 조성구;최상현;김찬형
    • Journal of Radiation Protection and Research
    • /
    • 제31권4호
    • /
    • pp.165-171
    • /
    • 2006
  • 국내에서는 현재 물리적 인형 모의피폭체와 수십 개의 소형 MOSFET 선량계를 이용하여 유효선량(Effective Dose)을 실시간으로 정확하게 측정할 수 있는 시스템을 개발 중에 있다. 이때 사용되는 MOSFET 선량계는 그 크기가 매우 작으며, 상대적으로 높은 민감도를 가지고 선량을 실시간으로 측정할 수 있다는 장점이 있는 반면, 검출부위가 조직등가 물질이 아닌 실리콘으로 이루어져 있어 저에너지 광자에 대하여 적절한 보정이 필요하다. 본 연구에서는 몬테칼로 전산모사 방법을 사용하여 증기발생기 수실 내부의 에너지 스펙트럼에 대한 MOSFET 선량계의 선량보정인자 값들을 계산하였으며, 이렇게 계산된 보정인자 값들을 선행 연구에서 구한 값, 즉 0.662 MeV와 1.25 MeV의 광자만을 이용하여 구한 선량보정인자 값들과 비교하여 보았다. 비교 결과, 두 서로 다른 조건에서의 선량보정인자들은 큰 차이를 보이지 않았으며$(\leq1.5%)$, 따라서 선행 연구에서 구한 선량보정인자들을 원자력발전소의 증기발생기 수실에 그대로 적용하여도 큰 문제가 없음을 알 수 있었다. 또한, 증기발생기 수실에 대하여 결정된 선량보정인자들을 실측된 MOSFET 선량계의 선량값들에 적용하여 선량보정에 따라 유효선량이 어느 정도 변화하는 가를 확인한 결과, 유효선량은 선량보정인자를 적용할 경우가 적용하지 않을 경우에 비해 약 7% 정도 낮게 평가됨을 알 수 있었다.

개인 피폭선량계 소자 보정법 (Element Correction Method of Thermoluminescent Dosimeters)

  • 송명재
    • 한국의학물리학회지:의학물리
    • /
    • 제2권1호
    • /
    • pp.17-28
    • /
    • 1991
  • 방사선 피폭량을 정확히 측정하는 방법의 하나로 열형광선량계의 각 소자별 보정인자를 구하여 사용하는 방법이 있다. 열형광선량계를 기준 선량계, 제어선량계 및 현장 선량계의 3그룹으로 분류하여, 기준 선량계는 제어 및 현장 선량계의 소자보정인자 산출시에만 사용하며, 소자보정인자 산출을 위해 일부분씩 사용할 때를 제외하고는 안전한 장소에 보관한다. 소자보정인자는 기준 선량계의 반응도 평균치에 대한 각 소자의 반응도 비로서 정의된다. 선량계는 판독 횟수가 증가하거나 손상으로 인해 반응도가 감소하기 때문에 최초 구입할 때 또는 사용중에 소자보정 인자를 주기적으로 재산출하여야 한다. 이 소자보정방법은 새로운 선량계의 판독 오차를 줄이고 사용중인 선량계의 신뢰도를 향상시킬 수 있는 우수한 방법이다. 본 논문에서는 소자보정인자를 산출하기 위한 10가지 단계별 방법을 자세히 소개하였다.

  • PDF

인형 모의피폭체내 MOSFET 선량계의 에너지 및 방향 의존도를 고려하기 위한 선량보정인자 결정 (Determination of Dose Correction Factor for Energy and Directional Dependence of the MOSFET Dosimeter in an Anthropomorphic Phantom)

  • 조성구;최상현;나성호;김찬형
    • Journal of Radiation Protection and Research
    • /
    • 제31권2호
    • /
    • pp.97-104
    • /
    • 2006
  • 최근 방사선 치료 및 진단 분야에서 선량 측정을 위하여 다양하게 사용되고 있는 MOSFET 선량계는 검출부위가 실리콘으로 이루어져 있으며 다른 검출기들과 마찬가지로 어느 정도의 에너지 의존도와 방향 의존도를 보인다. 따라서 MOSFET 선량제가 공기 중이 아닌 모의피폭체 내에서 선량 측정에 사용될 경우 낮은 에너지를 갖는 산란 광자 등 이차 광자들로 인하여 선량을 실제보다. 높게 평가하게 된다. 본 연구에서는 MOSFET 선량계의 에너지 의존도와 방향 의존도로 인하여 발생하는 오차를 보정하기 위한 선량보정인자를 몬테카를로 전산모사 기법을 이용하여 계산하였다. 먼저 사용되는 인형 모의 피폭체의 체적소 모의피폭체(Voxel Phanom)를 CT 영상을 이용하여 제작하였으며 제작된 체적소 모의 피폭체를 몬테카를로 전산코드로 구현한 후, 모의피폭체 내 각 선량계 지점에서 입사하는 광자의 에너지 및 방향별 에너지 스펙트럼을 계산하였다. 각각의 선량계 지점에서 0.662 MeV와 1.25 MeV의 광자빔을 고려하였으며 또한 MOSFET 선량계의 방향은 실리콘 베이스 방향과 에폭시 방향을 고려하였다. 주어진 선량제 지점에서의 선량보정인자는 계산된 에너지 의존도들의 중간간을 이용하여 결정하였으며 이렇게 결정된 각 선량계 지점에서 선량보정인자는 0.89-0.97 범위의 값들을 나타내었다. 본 연구결과에 따르면 MOSFET 선량계를 이용하여 인형 모의피폭체 내에 선량을 측정할 때 에너지 의존도와 방향 의존도를 고려하지 않을 경우 측정 위치에 따라 $3{\sim}11%$ 정도의 측정오차가 발생할 수 있다. 그러므로 인형 모의피폭체 내의 선량을 정확하게 측정하기 위해서는 선량보정인자를 각 선량계에 필히 적용해주어야 한다.

진단방사선촬영에서 광자극형광선량계의 에너지의존성에 대한 보정인자 (Correction Factor for the Eenergy Dependence of a Optically Stimulated Luminescent Dosimeter in Diagnostic Radiography)

  • 김종언;임인철;이효영
    • 한국방사선학회논문지
    • /
    • 제5권5호
    • /
    • pp.261-265
    • /
    • 2011
  • 이 연구의 목적은 진단방사선촬영에서 환자의 피부선량을 측정하는 나노도트선량계의 에너지의존성에 대한 보정인자들을 구하는 것이다. 보정인자들은 랜다우어사에서 제공한 팬텀 정에 관한 X-선에 상대적인 선량계의 에너지반응그래프와 로사도 등이 발표한 IEC의 RQR 표준방사선 품질들에 대한 평균에너지 값들을 사용하여 구하였다. 결과들은 관전압 40-150 kVp에서 1-1.33의 보정인자들을 나타냈다. 얻어진 보정인자들은 각 관전압에서 정확한 피부선량 측정을 위하여 임상에 사용하는데 유용할 것으로 생각된다.

$CaSO_4:Dy$ 열형광선량계의 소자보정인자(ECF) 산출 (Measurement of ECF for $CaSO_4:Dy$ Thermoluminescent Dosimeters)

  • 임길성;김장렬
    • Journal of Radiation Protection and Research
    • /
    • 제30권4호
    • /
    • pp.231-236
    • /
    • 2005
  • 열형광선량계의 TL 소자는 동일한 제조공정에 의해 생산되지만 소자의 반응도가 선량계 별로 편차가 있고, 반복사용 또는 외부로부터의 물리적 자극에 의해 반응도가 조금씩 감소한다. 이러한 반응도 감소를 기준선량제의 평균반응값에 맞추어지도록 보정해 주는 인자가 소자보정이자(ECF)이다. 열형광선량계(TLD)의 ECF 측정절차에 대해 자세히 기술하였으며 319개의 기준선량계, 교정용선량계, 현장선량제의 ECF를 3회 측정하여 평균값을 구하였다. 또한 3회 측정에 대한 %CV를 구하여 ECF 측정값을 검증하였다. 선량계 종류별 용도별로 ECF값의 부포를 구했으며, %CV값의 분포도 나타내었다. 현장선량계는 지난 3년동안 6회정도 사용되었는데 ECF값의 변화가 거의 없었고, 보다 빈번하게 사용된 교정용선량계의 ECF값은 평균 4.7% 증가하였다.

차폐블록보정인자의 임상적 응용 (Clinical Use of Shielding Block Correction factors)

  • 이정옥;정동혁
    • 한국의학물리학회지:의학물리
    • /
    • 제14권2호
    • /
    • pp.69-73
    • /
    • 2003
  • 부정형 차폐조사면에 대하여 차폐블록보정인자를 측정하고 보고된 정방형 차폐조사면에 대한 결과들과 비교하여 이 인자의 임상적 응용을 논의하였다. 차폐블록보정인자를 팬텀속 임의의 깊이에서 측정할 수 있는 방법을 고안하고 차폐블록 12가지에 대한 측정을 수행하였다. 부정형 차폐조사면에 대한 차폐블록 보정인자는 정방형 차폐조사면에 대한 측정결과들과 $\pm$0.5% 이하의 차이를 보였다. 임상에서 일반적인 부정형 차폐조사면에 대한 선량계산시 정방형 차폐조사면에 대한 차폐블록보정인자를 적용할 수 있으나, 매우 작은 차폐조사면의 경우에는 실측을 통한 확인이 요구된다.

  • PDF

조직 표면에서의 베타선 흡수선량 측정 (Measurement of Absorbed Dose at the Tissue Surface from a Plain $^{90}Sr+^{90}Y$ Beta Sources)

  • 하석호;김정묵;육종철
    • Journal of Radiation Protection and Research
    • /
    • 제16권2호
    • /
    • pp.17-26
    • /
    • 1991
  • 외삽형 전리함을 사용하여 $^{90}Sr+^{90}Y(1.65mCi)$ 베타선원에 대해 교정점 30cm 거리에서 조직표면의 흡수선량을 측정하였다. 이때 흡수선량 측정에 영향을 주는 유효단면적, 입사창 감쇠율, 극성효과, 이온 재결합을 등의 보정인자를 분석하였다. 이들 인자를 보정한 후의 조직표면의 흡수선량은 $1.493{\mu}Gy/sec({\pm}2.9%)$로 평가되었다.

  • PDF

차폐 조사면에서 선량계산에 관한 연구 (The Study on Dose Calculations for Blocked Fields)

  • 정동혁;김진기;오영기;신교철;김기환;김정기;문성록;김정수;박인규
    • 한국의학물리학회지:의학물리
    • /
    • 제12권2호
    • /
    • pp.133-140
    • /
    • 2001
  • 본 연구에서는 차폐 조사면의 선량계산에 대해서 논의하였다. 이를 위하여 콜리메이터 조사면 r$_{c}$와 차폐 조사면 r$_{b}$의 함수로서 차폐블록 보정인자 $K_{b}$ 를 측정하였다. 측정결과로부터 두 조사면에 의존하는 $K_{b}$$A_{r}$ (r$_{b}$와 r$_{c}$의 A/P비)의 함수로서 단순화하였으며 또한 이것과 잘 일치하는 관계식도 제시하였다. 측정결과에 의하면 차폐 조사면에 대한 선량계산에서, 일반적인 경우에 Ar\ulcorner1 이므로 $K_{b}$ 의 보정을 무시할 수 있지만, $A_{r}$ = 0.5와 같은 특수한 경우에는 $K_{b}$ 를 보정하지 않으면 약 3.5%의 오차가 발생할 수 있다 이 결과는 차폐 조사면에서 정확한 선량 즉 MU계산을 위하여 $K_{b}$ 의 보정이 반드시 고려되어야 함을 의미한다.

  • PDF

광자극선량계의 저에너지 엑스선 특성비교 (Measuring Absorbed Dose from Medical X-ray Equipment Using Optically Stimulated Luminescence Dots)

  • 정숙진;진계환
    • 한국방사선학회논문지
    • /
    • 제12권1호
    • /
    • pp.79-83
    • /
    • 2018
  • 본 논문에서는 OSL 도트 선량계의 교정인자, 흡수선량 선형성, 피크전압 선형성, 각도 변화에 의한 흡수선량 변화를 측정하고 분석했다. 의료용 X 선발생 장치를 사용하여 조사에 노출 선량 보정 계수, 흡수선량 선형성, 피크 전압 선형성은 모두 IEC-62387-1 (2007) 기준을 만족하였다. 기준 방사선 노출과 관련하여 0도, 30도 및 60도에서 선량계 방향에 대한 기준은 -29 % (${\pm}30^{\circ}$) 및 + 67 % (${\pm}60^{\circ}$)이었다. 30도에서 측정된 값은 기준보다 -8 % 낮고 60도에서 기준보다 -18 % 낮게 나타났다. 그러므로 OSL 도트 선량계 사용 시 방향에 따른 영향을 보정하여야 한다.