• Title/Summary/Keyword: 선량률 지도

Search Result 89, Processing Time 0.02 seconds

The Benefit of Individualized Custom Bolus in the Postmastectomy Radiation Therapy : Numerical Analysis with 3-D Treatment Planning (유방전절제술 후 방사선치료를 위한 조직보상체 개발 및 3차원 치료계획을 통한 유용성 분석)

  • Cho Jae Ho;Cho Kwang Hwan;Keum Kichang;Han Yongyih;Kim Yong Bae;Chu Sung Sil;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.1
    • /
    • pp.82-93
    • /
    • 2003
  • Purpose : To reduce the Irradiation dose to the lungs and heart in the case of chest wail irradiation using an oppositional electron beam, we used an Individualized custom bolus, which was precisely designed to compensate for the differences In chest wall thickness. The benefits were evaluated by comparing the normal tissue complication probablilties (NTCPS) and dose statistics both with and without boluses. Materials and Methods : Boluses were made, and their effects evaluated in ten patients treated using the reverse hockey-stick technique. The electron beam energy was determined so as to administer 80% of the irradiation prescription dose to the deepest lung-chest wall border, which was usually located at the internal mammary lymph node chain. An individualized custom bolus was prepared to compensate for a chest wall thinner than the prescription depth by meticulously measuring the chest wall thickness at 1 emf intervals on the planning CT Images. A second planning CT was obtained overlying the individuailzed custom bolus for each patient's chest wall. 3-D treatment planning was peformed using ADAC-Pinnacle$^{3}$ for all patients with and without bolus. NTCPS based on 'the Lyman-Kutcher' model were analyzed and the mean, maximum, minimum doses, V$_{50}$ and V$_{95}$ for 4he heari and lungs were computed. Results .The average NTCPS in the ipsliateral lung showed a statistically significant reduction (p<0.01), from 80.2${\pm}$3.43% to 47.7${\pm}$4.61%, with the use of the individualized custom boluses. The mean lung irradiation dose to the ipsilateral iung was also significantly reduced by about 430 cGy, Trom 2757 cGy to 2,327 cGy (p<0.01). The V$_{50}$ and V$_{95}$ in the ipsilateral lung markedly decreased from the averages of 54.5 and 17.4% to 45.3 and 11.0%, respectively. The V$_{50}$ and V$_{95}$ In the heart also decreased from the averages of 16.8 and 6.1% to 9.8% and 2.2%, respectively. The NTCP In the contralateral lung and the heart were 0%, even for the cases with no bolus because of the small effective mean radiation volume values of 4.4 and 7.1%, respectively Conclusion : The use of an Individualized custom bolus in the radiotherapy of postrnastectorny chest wall reduced the NTCP of the ipsilateral lung by about 24.5 to 40.5%, which can improve the complication free cure probability of breast cancer patients.

Radiation Effects on Fiber Bragg Grating Sensors by Irradiation Conditions of UV Laser (UV 레이저 노출조건에 따른 FBG 센서의 방사선 영향)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2310-2316
    • /
    • 2016
  • We studied the effect of $Co^{60}$ gamma-radiation on the fiber Bragg gratings (FBGs) by irradiation time of UV Krypton fluoride (KrF) excimer laser among grating processing parameters. The FBGs were fabricated in a different UV laser irradiation time at 30, 60, 90, and 120 seconds using the same commercial Ge-doped silica core fiber (SMF-28e). It was exposed to gamma-radiation up to a high dose of 34.3 kGy at the dose rate of 106 Gy/min, and then it was analyzed radiation effects by measuring the radiation-induced change in the temperature sensitivity coefficient and Bragg wavelength shift. According to the experimental results, We confirmed that the UV laser irradiation period for grating inscription has a highly effect on the radiation sensitivity of the FBGs. The radiation-induced Bragg wavelength shift by the change of laser irradiation conditions showed a difference more than about 50 %.

Evaluation of Photoneutron by Hypofractionated Radiotherapy (소분할 방사선치료 방식에 따른 광중성자 평가)

  • Park, Eun-Tae;Lee, Deuk-Hee;Kang, Se-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.347-354
    • /
    • 2015
  • Hypofractionated radiotherapy prescribes high dose once. Due to this there's a bad point that patients are exposed much dose in normal organ. But recently the study making up for a limit is continuing. Cause of preference of this kind of development of therapy technic and high-energy photon beam, patients can be exposed to additional radiation. Because photoneutron is created by photonuclear reaction. So, in this study I measured photoneutron and analyzed by DVH amounts of radiation from the treatment plan that was used to acute, metastatic pelvis cancer patients who was treated by hypofractionated radiotherapy applied IMRT. As a result, incidence of photoneutron based on the hypofractionated radiotherapy was not a big difference in proportion to the dose fractionation. Protective effects of normal organ by hypofractionated radiotherapy applying IMRT is relatively high compared to 3D CRT but also photoneutron was in created. So a proper treatment plan and a best therapy should be considerated.

A Study on the Radiation Dose Managements in the Nuclear Medicine Department (핵의학과에서 방사선 피폭관리 실태에 대한 조사 연구)

  • Lim, Chang-Seon;Kim, Se-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1760-1765
    • /
    • 2009
  • After administration of a radiopharmaceutical, the patient remains radioactive for hours or even days, representing a source of potential radiation exposure. Thus, including the personnel who are occupationally exposed to ionizing radiation, radiation exposure must be managed for members of the public, in particular for people accompanying patients. In this study we investigated radiation exposure dose management in the nuclear medicine departments at seven general hospitals. Two of them had no radiation safety considerations for patient transporters, sanitation workers and the like. And they all were careless of radioprotection for people accompanying patients. The average dose rate to people accompanying patients from radioactive patients just before a bone scan was 25.60 ${\mu}$Sv h-1. This is higher than 20 ${\mu}$Sv $h^{-1}$which is the annual public dose limit for temporary use. Therefore radiation dose measurement and risk assessment of patient transporters, sanitation workers and the like should be performed. And the nuclear medicine technologist should provide advices on the radiation safety to patient transporters, sanitation workers, people accompanying patients and so on. To ensure the radiation safety for people accompanying patients, it is required to restrict the patient's access to his relatives, friends and other patients or isolate patients.

Comparison of Esophageal Cancer Radiation Therapy Plans Using Volumetric Modulated Arc Therapy (체적 조절 호형 방사선치료(VMAT)를 활용한 식도암 치료계획 비교)

  • Won-Young Jeong;Jae-Bok Han;Young-Hyun Seo;Jong-Nam Song
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.249-256
    • /
    • 2024
  • The study aimed to evaluate the efficacy of treatment plans using full Arc and Partial Arc Coplanar volumetric modulated arc therapy and Non-Coplanar volumetric modulated arc therapy to minimize radiation treatment side effects, such as pneumonia, and protect normal organs in esophageal cancer radiotherapy. 30 patients who underwent Concurrent Chemoradiotherapy for esophageal cancer were included. Compared planning target volume, lung, heart, spinal cord and total monitor units among three treatment plans: fVMAT(2 Full Arc), pVMAT(4 Partial Arc), and ncVMAT(2 Partial Arc + 2 Non-Coplanar Arc). All plans met the PTV criteria, showing uniform distribution. The average dose to the heart was 5.8 Gy for fVMAT, 6.97 Gy for pVMAT, and 7.6 Gy for ncVMAT, with the lowest value in fVMAT, which was statistically significant. However, the average lung dose was 9.01 Gy for fVMAT, 7.71 Gy for pVMAT, and 7.12 Gy for ncVMAT, with V5Gy(%) values of 52.22%, 38.61%, 36.35% and V10Gy(%) values of 37.8%, 27.33%, 24.15% respectively. ncVMAT showed the lowest values, while fVMAT had the highest, with statistical significance. In conclusion, ncVMAT effectively reduces lung radiation exposure in esophageal cancer radiotherapy, potentially reducing the incidence of side effects such as pneumonia. However, considering factors like setup accuracy and treatment time, applying an appropriate treatment plan may lead to better outcomes.

Technical Status of Environmental Radiation Monitoring using a UAV and Its Field Application to the Aerial Survey (무인기를 이용한 광역부지 환경방사선측정 기술 현황 및 현장 적용 연구)

  • Ji, Young-Yong;Min, Byung Il;Suh, Kyung-Suk;Joung, Sungyeop;Kim, Kyoung-Pyo;Park, Jin-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.5
    • /
    • pp.31-39
    • /
    • 2020
  • According to lessons learned from an accident of Fukushima Daiichi nuclear power plant, it is advisable to make a comprehensive radiation survey by the accident phase for efficient response and risk management using diverse survey platforms. This study focuses on the technical status of environmental radiation monitoring using a UAV (Unmanned aerial vehicle) and the performance test of developed aerial survey system based on two detectors with an high energy resolution through the field application to contaminated areas. Finally, the performance of aerial survey at diverse flight heights was successfully achieved by introducing the correction factor to represent the results into ambient dose rate at 1m above the ground.

Comparative and Feasibility Evaluation of Detection Ability of Relative Dosimeters using CsPbI2Br and CsPbIBr2 Materials in Brachytherapy QA (근접방사선치료 QA에서 CsPbI2Br과 CsPbIBr2를 이용한 상대 선량계들의 검출 능력 비교 및 적용가능성 평가)

  • Seung-Woo Yang;Sung-Kwang Park
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.433-440
    • /
    • 2023
  • High dose rate brachytherapy is a cancer treatment that intensively irradiates radiation to tumors by inserting isotopes with high dose rates into the body. For such a treatment, it is necessary to deliver an accurate dose to the tumor tissue through an accurate treatment plan while delivering only a minimum dose to the normal tissue. Therefore, it is very important to check the location accuracy of the source through accurate Quality Assurance (QA) in clinical practice. However, since the source position is determined using a ruler, automatic radiographer, video monitor, etc. in clinical practice, it yields inaccurate results. In this study, a semiconductor dosimeter using CsPbI2Br and CsPbIBr2 was fabricated. And, in order to analyze whether it is more suitable for the relative QA dosimeter for brachytherapy device among the two materials, the radiation detection ability of each was compared and evaluated. In order to evaluate the radiation detection ability in brachytherapy, the reproducibility and linearity of the two materials were evaluated in 192IR. In the reproducibility evaluation, CsPbI2Br presented a Relative Standard Deviatio(RSD) of 0.98% and CsPbIBr2 presented an RSD of 3.45%. In the linearity evaluation, the coefficient of determination (R2) of CsPbI2Br was presented as 0.9998, and the R2 of CsPbIBr2 was presented as 0.9994. As a result of the evaluation, it was found that CsPbI2Br was more stable in radiation detection while satisfying the evaluation criteria in the dosimeter manufactured in this experiment. Therefore, CsPbI2Br material is suitable for application as a relative dosimeter for radiation detection in brachytherapy devices.

Calculation Formula for Shielding Thickness of Direct Shielded Door installed in Treatment Room using a 6 MV X-ray Beam (6 MV X-선 빔을 사용하는 치료실에 설치되는 직접 차폐식 도어의 차폐 두께 계산식)

  • Park, Cheol Seo;Kim, Jong Eon;Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.545-552
    • /
    • 2020
  • The purpose of this study is to derive a lead thickness calculation formula for direct-shielded doors based on NCRP Report No.151 and IAEA Safety Report Series N0.47. After deriving the dose rate calculation formula for the direct shielded door, this formula was substituted for the lead shielding thickness calculation formula to derive the shielding thickness calculation formula at the door. The lead shielding thickness calculated from the derived direct shielded door shielding thickness calculation formula was about 6% lower than that calculated by the NCRP and IAEA secondary barrier shielding thickness calculation methods. This result is interpreted as meaning that the thickness calculation is more conservative from the NCRP and IAEA secondary barrier shielding thickness calculation methods and fits well for secondary beam shielding. In conclusion, it is thought that the formula for calculating lead shielding thickness of the direct shielded door derived in this study can be usefully used in the shield design of the door.

Radiation Hardness Characteristics of Fiber Bragg Gratings on the High Temperature Annealing Condition (고온 어닐링 조건에 따른 FBG 센서의 내방사선 특성)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1980-1986
    • /
    • 2016
  • In this study, we studied the gamma-radiation effect of fiber Bragg gratings (FBGs) on the high temperature annealing condition after grating inscription using a KrF UV laser (248 nm). The FBGs were fabricated in a different annealing temperature using the same commercial Ge-doped silica core fiber (SMF-28e) and exposed to gamma-radiation up to a dose of 31 kGy at the dose rate of 115 Gy/min. The high temperature annealing procedure for grating stabilization was applied to change the radiation sensitivity of the FBGs. According to the experimental data and analysis results, the gratings that were stabilized at different temperatures at 100, 150 and $200^{\circ}C$ have clearly shown that exposure to higher temperatures increases their radiation sensitivity. The radiation-induced Bragg wavelength shift (BWS) was shown a difference of up to about a factor of two depending on the annealing temperature conditions of the gratings.

The Study of Radiation Sensitivity on Fiber Bragg Grating Written in Photo-sensitive Optical Fibers (광민감 광섬유로 제작한 광섬유 브래그 격자 센서의 방사선 민감도에 대한 연구)

  • Kim, Jong-Yeol;Lee, Nam-Ho;Jung, Hyun-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.2023-2028
    • /
    • 2014
  • In this study, we studied the effect of $Co^{60}$ gamma-radiation on the FBGs written in photo-sensitive and commercial Ge-doped single-mode optical fibers. The FBGs were exposed to gamma-radiation up to a dose of 17.8 kGy at the dose rate of 300 Gy/min. According to the experimental data and analysis results, the lowest Bragg wavelength shift (18 pm) was obtained by a grating written in photosensitive fiber without $H_2$-loading. Also, we confirmed that the H2 loading process has considerably more influence on the Bragg wavelength shift change under gamma radiation than $GeO_2$ contents in the fiber core.