• Title/Summary/Keyword: 선단지지력

Search Result 158, Processing Time 0.024 seconds

Bearing Capacity of Cast-in-situ Concrete Piles Socketed in Completely Weathered Gneiss (풍화암에 근입된 현장타설말뚝의 지지거동 분석)

  • 전경수;김정환;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.155-165
    • /
    • 1999
  • In completely weathered granite gneiss,8 of 40cm cast-in-situ concrete piles are constructed, and static pile load tests are executed on the piles to study the bearing behavior of rock-socketed piles. Subsurface explorations are carried out on the test site in three phases, in which 14 borehole investigations as well as the seismic investigation are performed. Rock socketd depths of the piles in the weathered rocks are varied as 3m, 6m and 9m to separate the shaft resistance from the end bearing resistance, and for a couple of piles, styrofoam of 10cm thickness is installed under the pile point to eliminate the effect of the end resistance. Strain gages are instrumented on re-bars to pick-up the transferred loads along the pile length. From the results of the pile load tests, the allowable shaft resistance and the allowable end bearing values of weathered rocks are proposed as $8.6t/m^2\;and\; 84t/m^2$, respectively. The empirical equation relating the elastic modulus of rock mass with the uniaxial compressive strength of the rock specimen is also proposed for the weathered rocks.

  • PDF

Rock Socket Roughness with Drilling Tools (굴착장비에 따른 암반근입말뚝의 공벽 거칠기)

  • Nam, Moon-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2007
  • Rock socketed drilled shafts are used as foundations for bridges and other transportation structures because of their load carrying capabilities. However, only limited information is available in the literature on the effects of roughness on the unit side resistance of rock socketed drilled shafts. The objective of this study is to investigate the effect of drilling tools on the socket roughness in soft clay shale in Texas. Field study showed that the drilling tools, auger and core barrel, produced different roughness in the boreholes.

Evaluation of Vertical Bearing Capacity of Bucket Foundations in Layered Soil by Using Finite Element Analysis (유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Saeed-ullah, Jan Mandokhai
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.35-45
    • /
    • 2016
  • Estimation of vertical bearing capacity is critical in the design of bucket foundation used to support offshore structure. Empirical formula and closed form solutions for bucket foundations in uniform sand or clay profiles have been extensively studied. However, the vertical bearing capacity of bucket foundations in alternating layers of sand overlying clay is not well defined. We performed a series of two-dimensional axisymmetric finite element analyses on bucket foundations in sand overlying clay soil, using elasto-plastic soil model. The load transfer mechanism is investigated for various conditions. Performing the parametric study for the friction angles, undrained shear strengths, thickness of sand layer, and aspect ratios of foundation, we present the predictive charts for determining the vertical bearing capacities of bucket foundations in sand overlying clay layer. In addition, after comparing with the finite element analysis results, it is found that linear interpolation between the design charts give acceptable values in these ranges of parameters.

A Study on the Behavior of Steel Pipe Subjected to Vertical Load inSand (사질토 지반에서의 강관 말뚝의 수직거동 연구)

  • 김영수;허노영;김병탁;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.5-13
    • /
    • 2000
  • 모래지반의 상대밀도, 말뚝의 시공방법, 일정근입깊이에 따른 소요향타 에너지 그리고 지하수 조건에 따라 말뚝의 지지력과 하중전이를 연구하기 위하여 강관말뚝을 이용한 모형실험을 수행하였다. 매입말뚝은 말뚝을 미리 설치한후에 지반성형을 실시하였고, 타입말뚝은 매입말뚝과 같은 깊이까지 항타높이를 5, 10, 15cm로 달리하여 말뚝을 관입하였다. 그 뒤 정적하중을 단계적으로 가하여 하중-침하 곡선에 의한 모형 말뚝의 지지력과ㅏ 말뚝내의 등간격으로 설치된 변형 게이지를 이용하여 타입말뚝 의 하중전이에 대해 살펴보았다. 타입말뚝의 하중전이시험에서는 항타 전과 항타 후 말뚝내 하중전의 소효항타 에너지에 따른 변화를 관찰하였다. 매입말뚝의 시험결과는 현재 가장 많이 사용하고 있는 대표적인 정적 지지력 공식들에 의하여 계산되어진 값들과 비교 분석하였다. 그 결과 상대밀도가 작은 느슨한모래지반에서는 Vesic 공식이 그리고 상대밀도가 큰 조밀한 모래지반에서는 Hanbu 공식이 가장 근접한 평가를 나타내었다. 하중전이시험에 의한 항타시 잔류응력은 모든 경우에서 지표면과 선단부위에서 아주 큰 잔류응력이 나타났고. 말뚝의 선단 지지력비는 상대밀도에 비례하게 증가하였다.

  • PDF

A Study on the Bearing Characteristics of No-grouted and End-compressed Micropile Adopting Wedge Horizontal Force (쐐기수평력을 도입한 무그라우팅 선단압축 마이크로파일의 지지력 특성에 관한 연구)

  • Hwang, Gyu-Cheol;Ahn, U-Jong;Lee, Jeong-Seob;Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.67-75
    • /
    • 2018
  • In this study, we developed a micropile equipped with ground fixing wedge device which is able to ensure the bearing capacity early before grouting by expanding the tip and exerting the tip surface friction while compressing and expanding the tip of the micropile during loading. The purpose of this study is to verify the applicability of the developed micropile to the ground with various kinds of strength and to compare its characteristics with those of the simple tip expansion micropile. A new test system including a model soil box which can measure the tip resistance and the tip skin friction separately was devised. The loading test was carried out according to the changes of the ground strength and the tip cross section using the devised test systems. As a result of the test, it was found that the developed micropile increased the tip skin friction due to the wedge horizontal force as the soil strength increased and could be applied more effectively to the ground with the strength not lower than the strength of the weathered rock. In addition, it was found that additional bearing capacity could be obtained due to the tip cross section expansion and the wedge horizontal force exertion even in the ground with the strength below the weathered rock strength.

Determination of True Resistance from Load Transfer Test Performed on a PHC Pile (PHC 말뚝의 하중전이실험을 통한 참 지지력의 산정)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Dzung, N.T.
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.113-122
    • /
    • 2006
  • Although a number of static pile load tests have been performed in this country, re-consideration on the interpretation and loading method is needed, because of their less usefulness in practice. For this study, a static loading testing was performed for a long instrumented PHC pile, which was installed in sand layer overlying thick soft clay. The shaft resistance of the pile had been monitored for a long time after installation, and then the static load testing was performed by the quick load test, unlike the recent Korean practice. Using the measured data, the elastic modulus of pile, residual stress and true resistance on the pile were determined. In the event, it was found that the residual stress on the pile, which remained prior to the static loading, significantly affects the shaft and toe resistances. Also, it was realized that the setup effect for the long pile is significant.

Evaluation of CPT-based Pile Load Capacity Factors with Cylindrical and Taper Pile (원통형 및 테이퍼말뚝의 하중-침하특성 및 CPT지지력상관계수)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Kim, Min-Kee;Hwang, Sung-Wuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.59-68
    • /
    • 2007
  • In this study, evaluation of load capacity and CPT-load capacity parameters were performed using calibration chamber tests for different types of piles including straight-side and tapered piles. Various soil conditions were considered in the investigation, aiming at establishing design procedure for foundation of electronic transmission tower structures. Test results show that no significant difference of total load capacity from straight-side and tapered piles, while individual components of base and shaft load capacities were quite different. Based on the test results, values of CPT-load capacity correlation parameters for different pile types were analyzed for the evaluation of both base and shaft load capacities.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.

A Study on the Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Class-A and C1 Type Numerical Analyses (현장시험과 Class-A 및 C1 type 수치해석을 통한 강관매입말뚝의 거동에 대한 연구)

  • Kim, Sung-Hee;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, a series of full-scale field tests on prebored and precast steel pipe piles and the corresponding numerical analysis have been conducted in order to study the characteristics of pile load-settlement relations and shear stress transfer at the pile-soil interface. Dynamic pile load tests (EOID and restrike) have been performed on the piles and the estimated design pile loads from EOID and restrike tests were analysed. Class-A type numerical analyses conducted prior to the pile loading tests were 56~105%, 65~121% and 38~142% respectively of those obtained from static load tests. In addition, design loads estimated from the restrike tests indicate increases of 12~60% compared to those estimated in the EOID tests. The EOID tests show large end bearing capacity while the restrike tests demonstrate increased skin friction. When impact energy is insufficient during the restrike tests, the end bearing capacity may be underestimated. It has been found that total pile capacity would be reasonably estimated if skin friction from the restrike tests and end bearing capacity from the EOID are combined. The load-settlement relation measured from the static pile load tests and estimated from the numerical modelling is in general agreement until yielding occurs, after which results from the numerical analyses substantially deviated away from those obtained from the static load tests. The measured pile behaviour from the static load tests shows somewhat similar behaviour of perfectly-elastic plastic materials after yielding with a small increase in the pile load, while the numerical analyses demonstrates a gradual increase in the pile load associated with strain hardening approaching ultimate pile load. It has been discussed that the load-settlement relation mainly depends upon the stiffness of the ground, whilst the shear transfer mechanism depends on shear strength parameters.

Assessment of Design Criteria for Bearing Capacity of Rock Socketed Drilled Shaft (암반에 근입된 현장타설말뚝의 지지력 산정기준에 대한 평가)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.95-105
    • /
    • 2003
  • The existing design criteria f3r the estimation of ultimate bearing capacity of drilled shaft socketed into rock masses are mainly obtained from the ultimate pile load capacities, which are determined by inconsistent failure criteria. Therefore, these design criteria generally produce difffrent predictions even for drilled shaft in the same condition. In this paper, the accuracies of the existing design criteria are investigated to develop an optimized design process for drilled shaft socketed into rock masses. Reasonable and consistent ultimate capacities of drilled shafts socked into rock masses, necessary far the check of accuracies of predictions, are determined by applying a specific failure criterion to a total of 11 pile load test results. A comparison between the predicted and the measured load capacities shows that ultimate base load capacities calculated from Zhang and Einstein's equation and NAVFAC are close to the measured values. Rosenberg and Journeaux's equation produces satisfactory prediction f3r ultimate side load capacity.