• Title/Summary/Keyword: 석회질 대리암

Search Result 4, Processing Time 0.021 seconds

Measurement of Crack Depth and Weathering Degree Using Ultrasonic Velocity and Deterioration Evaluation of the Unhyungung Stone Water Container (운현궁수조의 손상평가와 초음파 속도를 이용한 풍화도 및 균열심도 측정)

  • Chun, Yu-Gun;Lee, Chan-Hee;Jo, Seung-Nam;Jo, Yeong-Hoon;Park, Gi-Jung;Yang, Pil-Seung
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.1-11
    • /
    • 2008
  • The Unhyungung Water Container in the possession of the Seoul Museum of History in Korea is consisted of a calcareous marble developed laminated bedding and numerous argillaceous veinlets. This monument should need to conservation treatment because of black discoloration and seriously numerous cracks. Vertical and horizontal cracks in the monument are developed following stratification and argillaceous veinlets that are relatively low coherence between the rock materials. We have proved that the material inducing discoloration on the surface is carbon which is formed by deposited organic matters. As the result of the ultrasonic measurements, although highly surface weathering degree, the physical properties of the Unhyungung Water Container is confirmed slightly weathered state. The depths of cracks in the monument are calculated at maximum 60mm in some cracks completely penetrating into the wall and at minimum 9mm in the other crack. The cracks, developed following veinlet, are revealed that there penetrate from an outer wall to an inside wall for the monument. And most depths of cracks, developed following stratification, are calculated 20 to 30mm. This result will offer a significant data for conservation of the Unhyungung Water Container.

  • PDF

Lithological Characteristics and Provenance Consideration on the Jade Investiture Books of Joseon Dynasty in National Palace Museum of Korea (국립고궁박물관 소장 조선왕조 옥책의 암석학적 특징과 산지검토)

  • Lee, Chan Hee;Park, Jun Hyoung
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.485-497
    • /
    • 2019
  • The Jade Investiture Books in Joseon Dynasty shows diverse facies with various petrographic characteristics to green and white based on color. In lithologically, the green rocks are jade composed of calcite and serpentine, and the white ones are marbles consisting mainly in crystalline calcite. As a result of X-ray diffraction of jade rocks, the more green in color, the more increased intensity of serpentine appears. Therefore, the grade of jade is correlated with contents of serpentine. The Jade Investiture Books owned by the National Palace Museum of Korea are subdivided with 104 (41.3%) books made by only jade rocks, 98 (38.9%) books made by only marbles, and 50 (19.8%) books mixed with jade rocks and marbles. Among the mixed ones, 47 (18.6%) books consisted mainly of the marbles. This result shows the superior marble books occupy more than half of the total books. The Jade Investiture Books made in early Joseon Dynasty are composed of high grade jade. However, the grade of jade had decreased as the kings changed in process of time, and the composition of marble had increased in reverse proportion of jade. The quality of letter pigments, metal accessories and fabrics also had decreased with jade. These trends are reflected in the aspect of society such as weakening royal authority, national power and finance with the course of time. The jade of the books has different mineralogical characteristics from some modern jade produced in Chuncheon nephrite and Buyeo precious serpentine in Korea. Meanwhile, there is ancient literature that described quarries from Namyang in Hwaseong of Gyeonggi province. This area has a wide distribution of gneiss, limestone and limesilicate rocks are interbedded between muscovite schist. The limesilicate rocks contain diopside, which produced serpentine through alteration. It has possibility to make the Jade Investiture Books using these small amounts of jade through mining activity.

Geochemical Study on the Genesis of Chuncheon Nephrite Deposit (춘천 연옥의 기원에 관한 지구화학적 연구)

  • 박계현;노진환
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • To reveal the origin of the Chuncheon nephrite deposit, radiogenic isotopes of Sr and Pb, stable isotopes of 0 and H, and rare earth elements concentrations were analyzed. Such geochemical data were integrated to track the stepwise changes during the various ore formation stages. All the samples from the nephrite deposit have significantly low 0 isotopic ratios compared with the marble from which they had been formed, which reflects the very important role of the crustal circulating water with low 6180 and 6D in every stage of ore formation. There were progressive decrease of 6180 and 6D during the genesis of Chuncheon nephrite deposit. Newly formed minerals during the ore formation reveal disequilibrium with existing minerals in the respect of 0 isotope, which suggests that the ore-forming fluid of circulating water origin was involved with significant water-rock ratios in every step of ore formation process. The ore samples have Sr and Pb isotopic ratios similar to the values of Kyeonggi gneiss complex within which the deposit is located, which also suggests the important role of crustal circulating water in the genesis of the deposit. In conclusion, all the geochemical data support that major portion of the ore-forming fluid of Chuncheon nephrite deposit was derived ultimately from the surface water of meteoric origin. The meteoric water supplied Sr and Pb through leaching the rocks surrounding the ore deposits.

  • PDF

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).