• Title/Summary/Keyword: 석회석미분말

Search Result 14, Processing Time 0.04 seconds

Evaluation of Durability of Cement Matrix Replaced with Limestone Powder (석회석 미분말을 혼합한 시멘트 경화체의 내구성능 평가)

  • Woo-Sik Jang;Kwang-Pil Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.102-109
    • /
    • 2024
  • In order to use limestone powder as a material for concrete, the mechanical and durability characteristics of cement matrices manufactured by varying the substitution rate were evaluated. In general, limestone powder did not contribute to the cement hydration reaction, so as a result of the compressive strength test of cement mortar using it, the compressive strength decreased as the substitution rate increased. However, as a result of evaluating the durability performance of cement mortar using limestone powder, such as chloride ion penetration resistance, carbonation resistance, and chemical attack resistance, small particles of limestone powder showed superior results compared to the unsubstituted control mortar due to the micro-filler effect of filling the fine pores inside the cement matrix. Therefore, limestone powder is expected to be used as an effective method for improving the durability of concrete. In this study, the durability was evaluated by changing the mixing amount of limestone powder to 0 %, 5 %, 10 %, and 15 %, but it is judged that it is necessary to study in more detail the effect on the durability by changing the end and mixing amount of limestone powder to various levels in the future.

A Study on Strength Development and Resistance to Sulfate Attack of Mortar Incorporating Limestone Powder (석회석미분말 혼입 모르타르의 강도발현 및 황산염 침해에 대한 저항성에 관한 연구)

  • Koh Kyung-Taek;Yoo Won-Wi;Han Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.303-310
    • /
    • 2004
  • The purpose of this study was to investigate the effect of using method and replacement ratio of limestone powder and water-cement ratio on the compressive strength and the resistance to sulfate attack of mortar incorporating limestone powder as fundamental study to use limestone powder as an addition for concrete. As a results, The method using limestone powder as a part of cement showed decrease of the compressive strength of mortar. The strength of mortar incorporating limestone powder almost decided upon unit cement content. It was recognized that the method replacing limestone powder as a part of cement was effective to decrease the heat of hydration in concrete. The method using limestone powder as a part of fine aggregate showed the considerable increase of the strength and resistance to sulfate attack of concrete. Furthermore, it was recognized that the method using limestone powder as a part of fine aggregate were effective materials as an addition for concrete in view of the improvement of strength and resistance to sulfate attack.

A Study on the Resistance to Seawater Attack of Mortars and Concretes Incorporating Limestone Powder (석회석미분말을 혼입한 모르타르 및 콘크리트의 내해수성 연구)

  • Lee, Seung Tae;Jung, Ho Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2011
  • This study aims to evaluate the resistance to seawater attack of mortars and concretes incorporating limestone powder (0, 10, 20 and 30% of cement by mass). In order to achieve this goal, both chemical resistance by seawater and chloride ions penetration resistance of mortars or concretes were regularly monitored. From the test results, it was observed that the durability of cement matrix was greatly dependent on the replacement ratios of limestone powder. In other words, performance of cement matrix with 10% limestone powder was similar to that of OPC matrix. However, it was found that a high replacement ratio of limestone powder was ineffective to resist seawater attack.

Durability Characteristics of Limestone Powder added Concrete for Environment-Friendly Concrete (석회석미분말을 첨가한 친환경 시멘트콘크리트의 내구 특성)

  • Choi, Woo Hyeon;Park, Cheol Woo;Jung, Won Kyung;Jeon, Beom Joon;Kim, Gyu Seon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.59-67
    • /
    • 2012
  • During the manufacturing of Portland cement, CO2 gas is also necessarily produced through both decarbonation of calcium carbonate and kiln burning. By partially replacing the Portland cement with limestone powder, which is an inert filler in a concrete mixture, CO2 consumption can be reduced in a construction field. This study is to investigate the fundamental durability characteristics of limestone powder added concrete. Experimental variable was the replacement ratio of limestone powder from 0% to 25% with 5% increment. Durability characteristics were investigated by resistance to freeze-thaw, alkali-silica reaction and de-icing chemical in addition to the properties of fresh concrete. From test results, it was observed that the addition of limestone powder did not significantly affect the resistance to freeze-thaw reaction and de-icing chemical. The addition of limestone powder reduced the occurrence potential of alkali-silica reaction by reducing an alkali content in Portland cement.

Compressive Strength Characteristics of Non-Cement Composition Added with Limestone Powder (석회석미분말이 첨가된 비시멘트 조성물의 압축강도 특성)

  • Kim, Young-Min;Jung, Jae-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.178-179
    • /
    • 2019
  • The cement industry is a large amount of carbon dioxide emission industry, and research and development on non-cement composition is underway at the time when the absolute reduction of cement use is urgently needed. In addition, limestone fine powder is a by-product and is required to be recycled in terms of resource circulation. The compressive strength of the lime cement powder added noncement composition showed that the compressive strength increased as the limestone powder was added. It is believed that limestone fine powder played a role of stimulant such as alkali activator in non-cement composition.

  • PDF

An experimental study on engineering properties of concrete containing fly-ash, slag powder and limestone powder (석회석미분말을 사용한 4성분계 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Hong, Ji-Hoon;Yum, Jun-Haun;Kim, Jung-Bin;Jeong, Yong;Lee, Seong-Yeun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.561-564
    • /
    • 2006
  • This study is aimed for investigating the engineering properties of concrete containing fly ash, slag powder and limestone powder. The results of this study are as follows; As limestone powder is incresed, slump, air loss and strength is reduced, variation ratio of length is reduced, dynamic modulus of elasticity and neutralization depth is incresed.

  • PDF

Properties of fresh concrete using lime stone powder (석회석미분말을 사용한 굳지않은 콘크리트의 특성)

  • Cho, Il-Ho;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.108-112
    • /
    • 2005
  • In this research, the physical properties of fresh concrete using lime stone powder as a part of cement were investigated. Fresh concrete using lime stone powder was prepared with various lime stone powder replacement($5{\sim}12$ volume %) for cement and the quantities of sand aggregate ratio in concrete were 47.3%, 48.5% and 49.4% of ratio of sand aggregate. The workability, flowing characteristics, air content and bleeding of concrete using lime stone powder were tested and the results were compared with those of ordinary portland cement concrete. In the experiment, we acquired satisfactory results at the point of fresh concrete characteristics using lime stone powder within the replacement ratio of $8{\sim}12%$ and the optimum quantity of sand aggregate ratio in concrete was found to be $48.5%{\sim}50%$ of ratio of sand aggregate.

  • PDF

An Experimental Study on the Properties of Ultra Low Heat Mass Concrete Containing Limestone Powder (석회석미분말을 혼입한 초저발열 매스콘크리트의 특성에 관한 연구)

  • 하재담;김동석;김태홍;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1175-1180
    • /
    • 2000
  • Recently, the crack of concrete induced by the heat of hydration of cement is a serious problem for more greater, special and higher strength of concrete structures. The increasing concrete's temperature is mainly caused by the heat of hydration of cement and so, to control the thermal stress of concrete structure is desirable to use low heater material of hydration. There are many methods to diminish the increasing of concrete temperature such as using of low heat cement, addition of fly-ash, application of pre-cooling, etc., and in this study, we evaluate the heating and mechanical properties of ultra low heat mass concrete using Low Heat Portland(KS Type IV) cement with 30% of limestone powder. The results of this study will be applied to side wall and bottom of No. 15 and 16 of underground LNG tank in Inchon.

Mechanical Properties and Durability of Concrete in Relation to the Amount of Limestone Use (석회석 혼입량에 따른 콘크리트의 역학적 및 내구특성)

  • Oh, Sungwoo;Shin, Dongcheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.138-144
    • /
    • 2017
  • In order to reduce carbon dioxide emission in construction industry, less amount of cement use can be one of the alternatives to manufacture concrete. One of the non-sintered construction materials are limestone, which is the raw material to manufacture ordinary Portland cement(OPC). A large amount of limestone have already been used as binders such as blended cement in Europe and US. Even European countries were already established the standard of blended cement, where the limestone can be used up to 35 percent. In this study, experimental researches were conducted to investigate the effects of limestone replacement on the mechanical properties and durability of concrete with 15%, 25% and 35% of limestone substitution to use limestone in blended cement. 15 percent use of limestone in blended cement developed equivalent or even higher compressive strengths compared to Plain mixture. Porosity of limestone cement with 15 percent substitution was much lower than Plain mixture. Most durability tests such as concrete carbonation, freeze-thaw cycle and drying shrinkage strains were conducted to evaluate long-term performance, and the test results indicated that 15 percent of limestone use did not significantly influence on the concrete durability compared with plain concrete.

Fundamental Properties of Limestone Powder Added Cement Environment-friendly Concrete for Concrete Pavement (석회석미분말을 함유한 친환경 시멘트콘크리트의 도로포장 적용을 위한 기초 연구)

  • Choi, Woo-Hyeon;Park, Cheol-Woo;Jung, Won-Kyong;Kim, Ki-Heon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-49
    • /
    • 2012
  • PURPOSES : This study is to investigate the fundamental properties of limestone added cement concrete for application of pavement. METHODS : As the production of Portland cement causes environmental problems, engineers have sought more environment-friendly concrete construction materials. Limestone powder can be used for concrete as a partial replacement of Portland cement. One of the great applications of limestone powder added cement concrete might be a cement concrete pavement since the concrete pavement consumes massive quantity of Portland cement. Experimental variables were different replacement level of limestone powder by 0% to 25% with 5% increment. Before hardening of fresh concrete, setting time and plastic shrinkage characteristics were investigated in addition to other basic properties. Properties of hardened concrete included compressive, tensile and flexural strength as well as drying shrinkage. RESULTS : The addition of limestone powder did not significantly affect the properties of fresh concrete. Strength deceased as the replacement ratio increased and when the replacement ratio was greater than 10% decrease rate increased. CONCLUSIONS : It was found that the partial replacement of the limestone powder to cement in pavement materials can be positively considered as its mechanical properties show comparable performance to those normal concrete.