• Title/Summary/Keyword: 석탄 가스화 용융 슬래그

Search Result 39, Processing Time 0.024 seconds

Entrained-Flow Coal Water Slurry Gasification (분류층 습식 석탄가스화 기술)

  • Ra, HoWon;Lee, SeeHoon;Yoon, SangJun;Choi, YoungChan;Kim, JaeHo;Lee, JaeGoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2010
  • Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

Reduction of Hydration Heat of Mass Concrete Using Coal Gasification Slag as Mixed Fine Aggregates (석탄 가스화 용융 슬래그를 혼합잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Han, Min-Cheol;Kim, Jong;Choi, Il-Kyeung;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.

Reducing Hydration Heat of Mass Concrete by Applying Combination of Powdered Materials and CGS as Fine Aggregate (분체계 재료조합 및 석탄 가스화 용융 슬래그를 잔골재로 활용한 매스 콘크리트 수화열 저감)

  • Park, Sang-Won;Han, Jun-Hiu;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.169-180
    • /
    • 2024
  • In this study, to suggest an efficient method of using coal gasification slag(CGS), a byproduct from integrated gasification combined cycle(IGCC), as a combined fine aggregate for concrete mixture, the diverse performances of concrete mixtures with combined fine aggregates of CGS, river sand, and crushed sand were evaluated. Additionally, using CGS, the reduction of the hydration heat and the strength developing performance were analyzed to provide a method for reducing the heat of hydration of mass concrete by using combined fine aggregate with CGS and replacing fly ash with cement. The results of the study can be summarized as follows: as a method of recycling CGS from IGCC as concrete fine aggregate, a combination of CGS with crushed sand offers advantages for the concrete mixture. Additionally, when the CGS combined aggregate is used with low-heat-mix designed concrete with fly ash, it has the synergistic effect of reducing the hydration heat of mass concrete compared to the low-heat-designed concrete mixture currently in wide use.

Foundation Properties of Cement Mortar in the Use of Fine Aggregate of Coal Gasification Slag (석탄가스화 용융슬래그를 잔골재로 활용하는 시멘트 모르타르의 기초적 특성)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • This study evaluated the properties of Coal gasification slag(CGS) according to the CGS contents of cement mortar condition as a basic step to examine the applicability of CGS as concrete fine aggregate. Flow increased with increasing CGS contents for both Crushed sand a(CSa) and Crushed sand b+Sea sand(CSb+SS), but the amount of air contents decreased to the opposite tendency. Based on 28 days is maximum compressive strength was obtained at CGS 50% when CSa was used and CGS 75% when CSb+SS. The flexural strength were the maximum at 25% and 50% of CGS, but the tendency was similar to the compressive strength. Compared with CSa, the compressive strength and flexural strength 5% higher than those of CSb+SS, in CGS using of were about 5% higher than those of unused CGS. As a result of comprehensive study on the quality of mortar according to the CGS contents, it can be concluded that when CGS is mixed with fine aggregate at about 50%, it can contribute to securing workability and strength development positively so that resource recycling and quality improvement can be achieved at the same time.

Fundamental properties of mortar using pretreated CGS as fine aggregate (전처리에 의한 개질 CGS를 잔골재로 활용한 모르타르의 기초적 특성)

  • Kim, Su-Hoo;Beak, Sung-Jin;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.99-100
    • /
    • 2022
  • This study analyzed the basic characteristics of mortar using CGS modified by pretreatment. As a result of the analysis, it was found that CGS after reforming can be partially replaced with fine aggregates to solve the existing air volume reduction problem when used, and can contribute positively in terms of securing fluidity and improving strength. Therefore, it is considered necessary to verify as a functional material of CGS through concrete durability experiments as a future task.

  • PDF

Improvement Particle and Physical Characteristics Applying of The Pretreatment Process System of Coal Gasification Slag and It's Verification Based on Statistical Approach (석탄 가스화 용융 슬래그의 전처리 공정 시스템 적용에 따른 입자 및 물리적 특성 개선 및 통계적 검증)

  • Kim, Jong;Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.285-292
    • /
    • 2022
  • The objective of this study is to investigate whether CGS generated in IGCC satisfies the fine aggregate quality items specified in KS F 2527(Concrete Aggregate) through the pretreatment process system and the quality improvement the system. The statistical significance of the pretreatment process was analyzed through Repeated Measurements ANOVA as measured values according to individually pretreatment process system. As a result of the analysis, In the case of CGS fine aggregate quality before and after the pretreatment process system, the density increased 5.2 %, the absorption rate decreased by 1.86 %, the 0.08 mm passing ratio decreased by 2.25 %, and Fineness Modulus and Particle-size Distribution were also found to be adjustable. It was found that the pretreatment process system was significant in improving the quality of CGS.

Investigation of Degradation Mechanism of High Alumina Refractory in a Coal Gasifier (석탄 가스화기에서의 고알루미나 내화물의 손상 기구 규명)

  • Kim, Yuna;Lee, Jae Goo;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.638-645
    • /
    • 2009
  • High alumina refractory used in a coal gasifier was analyzed and the degradation mechanism by molten slag was investigated. The depth of refractory severely damaged by slag varied between 12~40 mm, including the adhered slag layer. The sample also showed the cracks formed in parallel to the slag/refractory interface. The degree of degradation varied with the micro-structures in the refractory. Fused alumina grains showed the uneven boundary and pore formation just along the edges, while the tablet alumina showed the slag penetrated between sintered alumina around which the formation of Al-Fe phase was observed. Calcium aluminate cements were not observed at the high temperature zone near the slag/refractory interface, probably due to dissolution into molten slag. Around large grains of alumina, rod shape alumina, which appeared to be recrystallized during cooling, were observed, and large pores were also formed around those grains. Therefore, in high alumina refractories, hot molten slag dissolves the bonding phase and rod-shape alumina phase is recrystallized upon cooling. During this process, cracks are developed due to structural change, and the degradation occurs by physical causes such as structural spalling.

Carbonation Depths of the Concrete Using Coal Gasification Slag Fine Aggregates Depending on Premix Type Cements (CGS를 잔골재로 활용한 콘크리트의 사전혼합시멘트 종류별 탄산화 특성)

  • Han, Jun-Hui;Kim, Su-Hoo;Beak, Sung-Jin;Han, Soo-Hwan;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.192-193
    • /
    • 2022
  • In this study, concrete durability was reviewed before CGS, a by-product generated from IGCC, was used as a fine aggregate for concrete. The characteristics of concrete and effect on carbonization according to the type of pre-mixed cement and the CGS substitution rate were analyzed. As a result of the analysis, the depth of carbonation according to the pre-mixed cement types increased by up to 52%, and the carbonation resistance tended to be similar overall when CGS was used as a fine aggregate.

  • PDF

Analysis of Fundamental Properties and Durability of Concrete Using Coal Gasification Slag as a Combined Aggregate (석탄가스화 용융슬래그를 혼합잔골재로 사용한 콘크리트의 기초적 특성 및 내구성 분석)

  • Choi, Il-Kyung;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.331-338
    • /
    • 2020
  • The aim of the research is to evaluate the possibility of using coal gasification slag (CGS) as a combined aggregate for concrete mixture. To achieve this goal, the fundamental properties and the durability of concrete were analyzed depending on various combining ratio of CGS into both fine aggregate with favorable gradation and relatively coarse particles. According to the results of the experiment, slump and slump flow were increased with content of CGS regardless of crushed fine aggregate with good and poor gradations while the air content was decreased. For the compressive strength of the concrete, in the case of using the crushed aggregate with good gradation, increasing CGS content decreased compressive strength of the concrete, while when the concrete used crushed aggregate with poor gradation, the compressive strength was the maximum at 50% of CGS content. As a durability assessment, drying shrinkage was decreased and carbonation resistance was improved by increasing CGS content. On the other hand, for freeze-thawing resistance, CGS influenced adverse effect on freeze-thawing resistance. Therefore, it is known that an additional air entrainer is needed to increase the freeze-thawing resistance when CGS was used as a combined aggregate for concrete.

Engineering Properties of Concrete using of Coal Gasification Slag as the Fine Aggregates (석탄가스화 용융슬래그를 잔골재로 치환한 콘크리트의 공학적 특성)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.194-201
    • /
    • 2019
  • This study analyzed the properties of concrete depending on the coal gasification slag(CGS) contents in order to examine the applicability of CGS as the fine aggregate for concrete. Experimental results, trended that the slump and slump flow increased with increasing CGS contents, and air contents has decreased. Evaluation index for segregation of normal strength concrete(EISN) is showed was good from CGS 25% when using crushed sand A(CSa) and CGS 50% when using mixed sand(MS). The compressive strength decreased with increasing CGS contents when CSa was used. However, when MS was used, the maximum value was CGS 50% due to parabolic tendency. Depending on fine aggregates type, compared with compressive strength of CSa was about 8% higher than that of MS, and depending on the use or unuse of CGS, more advantageous at higher strength than low strength. As a result of relative performance study on the quality of concrete according to the CGS contents, it is considered that CGS can be positively contributed to enhancement of workability and strength development when mixed with fine aggregate around 25~50%.