• Title/Summary/Keyword: 석탄가스화기

Search Result 145, Processing Time 0.028 seconds

Modeling of the gasifier section for IGCC plant (IGCC 플랜트에 적용할 가스화기부의 모델링)

  • Park, Jin-Hoo;Kim, Tae-Hyun;Go, Young-Gun;Choi, Sang-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.445-448
    • /
    • 2007
  • 석탄가스화 복합발전(IGCC)에서 석탄 가스화 기술이 전 공정의 성능에 큰 영향을 미치는 중요한 요소이다. 연료 및 산화제의 공급방식, 가스화기의 기본 구조, 벽면의 구성 방식, 용융 슬랙 및 생산되는 합성가스 배출 방식 등에 따라 가스화의 성능이 영향을 받는다. IGCC plant의 정확한 성능 해석을 위해서는 석탄가스화기 공정 모델의 정밀도를 높일 필요성이 있다. 기존의 열병합 발전 사이클 해석에서 적용되었던 열 및 물질정산과 평형계산 방식을 통하여 석탄가스화기 공정을 해석하는 방법을 확인, 정리하고 이를 개선하기 위한 절차 및 방안을 제시하고자 한다. 가스화기 내부 공정을 크게 탈휘발과 가스화의 단계로 구분하여 가스화기 출구조건을 예측하였으며, ASPEN PLUS를 이용한 공정해석을 실시하였다. 가스화기 출구에서의 합성가스는 주생성가스인 CO, $H_2$를 위주로 하여 조성을 얻을 수 있고, 그 결과들을 선행연구들과의 비교를 통하여 가스화기 모델의 분석을 실시한다. 그리고 가스화기 해석의 정밀도를 높이기 위한 향후 고려될 가스화기 모델에 관하여 논의한다.

  • PDF

ASPEN 코드를 이용한 석탄가스화기내 주요 변수들의 가스화 성능에 대한 영향

  • 이승종;마수만;윤용승;김형택
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.11a
    • /
    • pp.37-41
    • /
    • 1993
  • ASPEN 코드를 이용하여 석탄가스화기에 영향을 주는 온도, 압력, 산화제 및 증기를 변수로 선택하여 각 변수의 변화에 따른 가스화기의 온도 및 생성가스의 조성 변화를 살펴보았다. 석탄가스화기는 combustion zone, char gasification zone 및 gas shift reaction zone의 3부분으로 나뉘어 각 영역의 특성에 맞게 모사 되었다. 온도와 산화제는 석탄가스화기에 커다란 영향을 주는 요소로 나타났고, 압력과 증기 또한 주요 변수인 것으로 나타났다. 본 연구의 궁극적 목적은 석탄가스화기의 운전 조건을 최적화하는데 있다.

  • PDF

Design and Test of Slag Tap Burner System for Prevention of Molten Slag Solidification in Coal Gasifier (석탄가스화기 용융슬랙의 고형화 방지를 위한 슬랙탭 버너시스템 설계 및 시험)

  • Chung, Seokwoo;Jung, Kijin;Lee, Sunki;Byun, Yongsu;Ra, Howon;Choi, Youngchan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.74.2-74.2
    • /
    • 2011
  • 석탄가스화 기술은 고온, 고압 조건에서 석탄과 산소의 불완전연소 및 가스화 반응을 통해 일산화탄소(CO)와 수소($H_2$)가 주성분인 합성가스를 제조하여 이용하는 현실적인 에너지원의 확보를 위한 방법인 동시에 이산화탄소를 저감할 수 있는 기술이다. 석탄가스화기 공급되는 석탄은 산소와의 부분 산화, 수증기 및 $CO_2$와의 반응에 의하여 합성가스로 전환되는데, 일반적으로 슬래깅 방식 석탄가스화기의 정상운전 중에 가스화기 내부 온도는 $1,400{\sim}1,600^{\circ}C$ 정도의 고온이며, 운전압력은 20~60 기압으로 매우 고압 상태에서 운전이 이루어지는데, 공급되는 석탄 시료의 성분들 중 가연성 물질의 99% 이상이 합성가스로 전환되는 반면, 회분에 해당되는 무기물의 대부분은 용융 슬랙 형태로 가스화기의 벽을 타고 흘러내리다가 슬랙탭을 통해 하부의 냉각조로 떨어지면서 급냉이 이루어지게 된다. 그러므로, 석탄가스화기 정상운전중 슬랙탭 주변의 온도를 고온으로 유지함으로써 용융슬랙의 고형화를 방지하는 것은 석탄가스화기의 안정적인 연속운전을 위하여 중요한 기술 중의 하나라고 할 수 있다. 따라서, 본 연구에서는 저급탄 가스화를 위한 1 톤/일급 고온, 고압 습식 석탄가스화기의 정상운전중 슬랙탭 부근에서 용융슬랙의 고형화를 방지하기 위한 슬랙탭 버너시스템의 설계를 진행하였으며, 안정적인 운전조건 도출을 위하여 보조연료(CNG)와 산소의 공급비율에 따른 화염특성 시험을 진행하였다.

  • PDF

Prediction of Slag Behavior in an Entrained Flow Coal Gasifier for IGCC (IGCC용 분류층 석탄가스화기 내부에서의 슬래그 거동 예측)

  • Chung, Jaehwa;Chi, Junhwa;Lee, Joongwon;Kim, Simoon;Seo, Seokbin;Park, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.2-75.2
    • /
    • 2011
  • 고온고압에서 운전되는 IGCC용 분류층 석탄가스화기는 석탄에 포함된 회 성분을 대부분 용융 슬래그 형태로 가스화기 벽을 타고 흘러내리게 하여 가스화기 하부로 배출시킨다. 이러한 용융 슬래그를 원활하게 배출시키는 것은 가스화기의 안정적인 운전에 있어서 매우 중요하다. 본 연구에서는 슬래그 층 내의 물질수지, 운동량 및 에너지 보존을 고려하여 석탄가스화기내의 슬래그 거동을 해석할 수 있는 모델 식을 유도하였다. 유도된 슬래그 거동 모델 식들을 적용하고 가스화기의 형상을 고려하여 가스화기 내부에서의 슬래그 거동을 해석하였다. 또한 슬래그 물성치들인 슬래그 점도, 슬래그 비열, 슬래그 밀도, 슬래그 열전달 계수 등을 슬래그의 조성 변화에 따라 별도로 산정하여 슬래그 해석의 입력 데이터로 사용하였다. 슬래그에 첨가되는 석회석의 비율을 해석의 주요 변수로 사용하여 가스화기 하부에서 용융 슬래그 및 고체 슬래그 두께, 용융 슬래그 층 내부에서의 슬래그 점도분포 및 슬래그 속도분포 등 슬래그 거동의 주요 특성들을 예측하였다. 해석결과로 석탄에 석회석의 첨가량을 증가시키면 슬래그의 임계점도온도(temperature of critical viscosity)와 점도가 낮아지므로 가스화기 벽면에서의 용융 슬래그의 유동속도는 빨라지며, 고체 슬래그와 용융 슬래그의 두께가 감소하는 것을 정량적으로 확인할 수 있었다.

  • PDF

Application of Coal Ash Viscosity Models for Analyzing Operation Temperatures of an Entrained Flow Gasifier (분류층 가스화기에서 운전온도 분석을 위한 석탄회 점도모델 적용)

  • Chung, Jaehwa;Lee, Joongwon;Park, Seik;Kim, Simoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.77.2-77.2
    • /
    • 2011
  • 고온고압에서 운전되는 분류층 석탄가스화기에서 석탄의 회성분을 용융슬래그로 원활하게 배출하는 것은 석탄가스화기의 안정적인 운전을 위하여 매우 중요하다. 본 연구에서는 분류층 석탄가스화기에서 원활한 슬래그의 배출조건을 파악하기 위해서 여러 슬래그 점도예측 모델들을 사용하여 가스화기의 운전온도 변화에 따른 슬래그의 점도변화를 해석하여 점도해석모델들의 적용성을 비교분석하였다. 본 연구에서 선정한 가스화기 설계탄의 회 성분을 토대로 슬래그의 점도를 계산한 결과 점도해석 모델별로 온도에 대한 점도 값이 매우 상이하게 예측되었다. 또한 설계탄에 대한 점도예측 모델들을 적용한 계산결과로부터 슬래그의 점도가 80 poise가 되는 온도인 $T_{80}$이 매우 높은 값으로 예측되었다. 따라서 가스화기의 운전온도에서 용융 슬래그를 원활하게 배출하기 위해서 설계탄에 Flux를 첨가하여 슬래그의 점도를 낮추어 줄 필요가 있음을 알았다. 기존의 점도예측 모델들 중에 점도 예측 값이 중간치 정도의 경향을 보이는 Hoy가 개발한 모델을 기준으로 가스화기의 적정 운전온도에서 Flux로 첨가할 석회석 양을 산출하였다. 본 슬래그 점도모델들의 적용 결과로부터 실제 가스화기의 운전이나 설계에 슬래그의 특성을 파악하여 운전조건 도출이나 해석에 활용하기 위해서는 운전예정인 탄종에 대한 점도측정 실험을 병행하여 적정한 점도 예측모델을 선정하는 것이 중요함을 알 수 있었다.

  • PDF

A Prediction of Coal Ash Slagging for Entrained Flow Gasifiers (분류층 석탄가스화기 Slag 용융특성 예측)

  • Koo, Jahyung;Kim, Bongkeum;Kim, Youseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.108.1-108.1
    • /
    • 2010
  • 분류층 가스화기는 석탄과 산소(공기) 및 수증기가 반응하여 $1200{\sim}1600^{\circ}C$의 고온, 20~60기압의 고압에서 작동되어 합성가스를 생성하며 합성가스에 포함된 입자 및 황화합물 등을 정제설비를 통하여 정제 후 발전 및 화학원료로 사용한다. 석탄가스화 중 석탄에 포함된 대부분의 회분은 용융슬래그 형태로 가스화기 벽면을 따라 흘러 내려 가스화기 하부의 냉각수조에서 급랭되어 배출된다. 이때 용융슬래그의 원활한 배출을 위해서는 일정범위의 점도를 유지하는 것이 필요하다. 슬래그의 점도는 가스화기 온도 및 Ash의 조성에 따라 크게 변하며 가스화기 설계 및 운전 시 매우 중요한 변수이다. 따라서 최적의 설계 및 운전을 위해서는 Ash의 점도예측이 중요하며, 분류층 가스화기내부에서 Ash 점도 예측을 위한 DooVisco 프로그램을 개발하였다. DooVisco는 가스화기 내부에서 슬래그 용융온도 및 온도별 점도, 가스화기 최소 운전온도 및 석회석 투입 효과 분석뿐만 아니라 석탄의 혼합 사용 시의 특성 예측도 가능하도록 개발되었다. DooVisco는 슬래그 주요 4성분인 SiO2, Al2O3, CaO, FeO 성분에 대한 Phase Diagram을 이용하여 1차적으로 슬래그용융온도(Liquidus Temperature)를 예측하고, 주요 4 성분 외에 Na2O, MgO, K2O, TiO2 등을 고려한 Kalmanovich Model을 이용하여 점도를 예측한다. 최종적으로 슬래그 용융온도와 점도를 활용하여 분류층 가스화기 운전가능 온도범위를 예측한다. 개발된 DooVisco를 활용하여 300MW급 실증 IGCC 플랜트에 사용가능성이 있는 석탄을 대상으로 슬래그의 용융온도 및 점도 등을 예측하였으며 최적 운전을 위한 슬form점도 조절용 Flux인 석회석 투입량 등을 평가하였다. 평가 결과 슬래그 용융온도가 $1700^{\circ}C$ 이상으로 석회석 투입이 필요하다고 판단되었다. 약 가스화기 내부 온도를 $1500^{\circ}C$ 정도에서 원활한 운전을 위해서는 석탄 대비 약 10% 내외의 석회석 투입이 필요할 것으로 평가되었다. DooVisco는 분류층 가스화기 설 계시 가스화기 최적 운전 온도 설정 및 Flux 투입필요성, 종류, 투입량 선정에 활용될 수 있을 뿐만 아니라 플랜트 운전시 석탄의 탄종 적합성 등을 판단하는데 활용될 수 있을 것이라 판단된다.

  • PDF

Studies of rate of ash deposit of various coals for analysis of IGCC fouling effect (석탄가스화기 파울링 현상 해석을 위한 탄종별 회분퇴적속도 연구)

  • 임병표;최병철;김형택
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.61-66
    • /
    • 2000
  • 분류층 건식 석탄가스화 방식을 택하고 있는 아주대학교 내 BSU 가스화기는 반응 후 회분을 용융상태의 슬랙으로 처리하여 가스화기 하단으로 배출하고, 생성된 석탄가스는 가스화기 상부로 배출시켜 생성된 석탄가스로의 슬랙 유입을 최소화한 디자인이다. 이러한 분류층 가스화기는 고정층이나 유동층 방식의 가스화기에 비해 가스화기 출구에서의 온도가 130$0^{\circ}C$이상의 고온이 유지되므로, 미분탄을 사용하는 분류층 가스화방식에서는 미립 입자 일부가 비말동반되어서 미분탄내의 회재를 100% 용융 슬랙으로 처리하기는 불가능하고, 수 % 정도는 생성 석탄가스와 함께 가스화기 밖으로 배출된다.(중략)

  • PDF

Gasification Performance in the Dry-Feeding Gasifier with Variation of Feed Ingredients and Main Operational Problems (건식 가스화기 시료의 선정인자 및 변화에 따른 가스화 특성과 주요 운전상 문제점)

  • 윤용승;정석우;김원배
    • Journal of Energy Engineering
    • /
    • v.10 no.2
    • /
    • pp.90-104
    • /
    • 2001
  • 일일 최대 석탄처리 용략이 3톤인 건식 석탄가스화기를 사용하여 가스화에 미치는 주요 변수들중 산화제내 산소농도와 증기 주입량을 변경시켜 가스화성능을 조사하였고, IGCC용 대성석탄을 선정하는 입장에서의 주요 인자 및 고온고압 조건에서의 가스화기 운전상 특성과 문제점을 파악하여 운전상 문제에 대한 대책을 제시하였다. 사용한 석탄은 유연탄인 중국 대동탄과 아영청탄인 미국 알라스카의 유시벨리탄에었는데, 두 탄중 모두 건식 가스화기의 운전상에는 문제가 없었다. 가스화를 위한 산소의 농도는 90%까지 그리고 석탄시료 무게 대비 증가량 10∼12%까지는 가스화의 온도 유지와 가스조성 측면에서 무리 없이 적용할 수 있다고 판단되었다. 이들 가스화 시험을 통하여 생성된 슬랙은 가스화기 슬랙탭의 조업 온도와 대상석탄 회재의 용융특성에 따라 침상 또는 알갱이 형태로 배출되었으며, 슬랙으로부터 중금속 성분이 유출되는지를 분석해 본 결과 침출수에 의한 2차 오염은 없는 것으로 확인하였다. IGCC용 석탄을 선정하는 석탄특성에서는 미분탄의 수분함량, 회재함량, 회재용융온도, 발열량 측면에서 검토하였는데, 건식가스화기의 경우 미분탄의 표면수분의 제거가 중요하고 회재의 함량과 회재의 용융온도를 같이 고려하여 적정한 시료 석탄이 선정되어야 한다는 결론을 얻었다. 가스화기 운전측면에서는 여러 기계적인 문제점들이 발견되었는데 시료공급노즐의 막힘문제, 역화문제, 고온가스 누출문제, 추운 겨울 운전시 오링(O-ring)문제 등에 대한 논의와 대책을 제시하였다.

  • PDF

Characteristics of Solid Materials sampled in the Bench Scale Coal Gasifier (Bench Scale급 석탄가스화기 시스템내의 고체시료 특성)

  • Jung, Bongjin;Lee, Na-Yeon;Lee, Chan;Nam, Wonjun;Kim, Kyoung-Hoon;Yoon, Young-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.73.1-73.1
    • /
    • 2011
  • 석탄가스화 복합발전(IGCC) 시스템은 고온 고압으로 운전되는 가스화기에서 미분탄을 산소와 함께 가스화하여 주로 CO 및 $H_2$를 생성하고 이때 발생되는 먼지 및 황성분은 각각 집진기 및 탈황장치에서 제거되며, 석탄 회분은 고온에서 용융되어 슬래그의 형태로 배출되는 방식을 사용하고 있다. 본 연구에서는 석탄가스화 복합발전시스템 설계에 필요한 기본자료를 파악하기 위해서, 고온 고압의 운전조건에서 1일 3톤의 석탄을 처리할 수 있는 Bench Scale급 석탄가스화기를 이용하여 가스화에 사용된 원탄 및 가스화기 설비의 각 지점에서 샘플링한 고체 시료를 중심으로 열화학적 특성을 살펴보았다. 가스화 실험은 아역청탄 계열의 ABK 석탄을 대상으로 가스화기 내부의 온도와 압력을 $1400{\sim}1450^{\circ}C$, $7.5{\sim}7.6Kg/cm^2$로 유지시키면서 실시하였다. 실험에 사용된 석탄 시료의 기본적인 물성치를 조사하기 위하여 표준방법에 따라 석탄의 공업분석, 원소분석, 발열량분석 등을 실시하였다. 석탄가스화기에서 배출된 슬래그와 대상 석탄 회분의 특성을 파악하기 위해서 XRF를 이용한 회분의 성분분석, Heating Microscope를 이용한 회분의 용융점 분석, XRD를 이용한 회분과 슬래그내의 화합물의 형태 및 결정구조 파악, SEM을 이용한 슬래그의 형상 등을 분석하였다. 또한 석탄가스화기 시스템을 구성하는 각 설비의 특성을 파악하기 위해서 관련 설비의 특정 지점에서 채취한 시료의 입도분석, 원소분석, 촤 회분 무게비, 슬래그중의 잔존탄소함량, 슬래그와 슬래그로부터 제조된 용출수내의 중금속 함량분석 등을 실시하였다.

  • PDF

Product distribution of rapid devolatilization of pulverized coal (미분탄의 고속열분해시 생성물 분포해석)

  • Park, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.76.2-76.2
    • /
    • 2011
  • 석탄의 탄종별 열분해 생성물은 석탄가스화기의 뮬레이션 기법의 첫 번째 단계이며 이러한 탄종별 생성물 예측은 가스화기의 성능, 즉 가스화기 출구 가스조성, 탄소전환율, 냉가스 전환율등을 예측하는데 있어 가장 기본적이고 중요한 절차이다. 본 논문에서는 석탄가스화기내 열분해 과정을 모사할 수 있도록 석탄 성상과 가스화기 운전압력에 따라 탄종별 고온고압 열분해시의 생성물을 정량적으로 계산하는 방법을 제시하였다. Merrick(1983)의 방법을 기반으로 석탄의 성상(공업/원소분석치), 가스화기 운전압력과 몇가지 상관관계식으로부터 고온고압하 열분해 생성물을 계산하는 방법이며 이를 프로그램화하여 가스화기 시뮬레이터용 모듈로 구성할 수 있도록 하였다. 또한, 국내 수입 5개 탄종에 대하여 열분해 생성물의 조성을 구하였으며 이를 상용 열분해모델의 결과와 서로 비교하였다. 열분해 생성물 조성의 분포는 다른 상용 프로그램 결과와 부합하였으며 생성물의 발열량도 원탄의 발열량과 적합한 결과를 보여주었다.

  • PDF