• Title/Summary/Keyword: 석출물

Search Result 329, Processing Time 0.028 seconds

Method for Making High Purity Gallium by Electrowinning (전해채취에 의한 Gallium의 정제기술)

  • Choi, Young-Jong;Hwang, Su-Hyun;Jeon, Deok-Il;Han, Kyu-Sung
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.63-67
    • /
    • 2014
  • Gallium is an important material and is used by industry of oxide semi-conductor and LED chip. However, the most of the gallium-containing waste resources became outflow abroad and the most of which is imported from oversea by following technical problem and low circulation rate. In this research, the recovery of high purity Gallium metal from Gallium scrap, which containing about 30% of Gallium, was investigated by using hydro-metallurgical process. As pretreatment, the Gallium scrap was pulverized and leached by strong acid such as hydro chloric acid. At the leached solution, Indium was separated as an Indium sponge by substitution reaction and then Gallium and Zinc hydroxide separated and filtrated using strong alkaline solution such as sodium hydroxide by precipitation method. Also, Gallium metal and Zinc metal was recovered by electrowinning method. To make an electrolytic solution, Gallium and Zinc hydroxide was leached by strong alkaline solution. Finally, High purity Gallium metal was recovered by vacuum refining process to remove the Zinc impurity.

A Study on the Development of Self-Repairing Smart Concrete Using Microorganism (미생물(微生物)을 이용한 자기수부성(自己修復性) 스마트 콘크리트 개발에 관한 기초연구)

  • Kim, Wha-Jung;Chun, Woo-Young;Ko, Kwan-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.441-444
    • /
    • 2008
  • This study was conducted to develop self-repairing ability for concrete so that inspection could be available even in the event of minute cracks, for more economic concrete structure maintenance and longevity. This is a basic attempt to develop self-repairing concrete using the biochemical reaction of bacteria through an innovative method. In this study, the characteristics and problems posed by self-repairing concrete as proposed in international scientific journals were examined, and the potential of new concrete reformation and performance improvement using bio-mineralization was explored. Bio-mineralization, which is an action of creating bio-minerals using an organism, was proposed. A new concept of bacteria such as bacillus pasteurii using bio-mineralization that precipitates calcium carbonate, as well as the possibility of mechanical performance and durability of concrete and repair of cracks, was introduced. Directions for further study through basic experiments and developmental feasibility of self-repairing concrete were also presented.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.125-137
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

  • PDF

Study on the Improvement of Strength for 12% Chromium Steel Rotor (12% Cr 로터강의 강도 개선에 관한 연구)

  • Jang, Yun-Seok;O, Se-Uk
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.625-625
    • /
    • 1989
  • To check technical improvement in the soundness and strength of 12% Cr steel rotor, a 25 tons of rotor with 65 tons of ingot was made in real size and was cut to pieces to take test samples, and the various mechanical tests such as impact, tensile, creep, and fatigue were carried out. The strengths are compared with those of 1% Cr-Mo-V rotor of same size. Microstructures of the samples are examined and reviewed. The results can be summarized as follows. 1) Fracture appearance transition temperatures are 80.deg. C at the center part and 60.deg. C near surface of 12% Cr rotor, and 8.deg. C near surface of 1% Cr-Mo-V rotor. 2) Comparative rapid softening occurs at higher temperatures above 600.deg. C for 12% Cr steel and 550.deg. C for 1% Cr-Mo-V steel in tension tests. 3) Fatigue crack propagation rate of 12% Cr steel is almost same as that of 1% Cr-Mo-V steel at the same corresponding surface part of the rotors. The crack growth rate of center part of 12% Cr rotor is faster than near surface part of the rotor, and the crack growth rate at the load condition of R=0.04 is slower than that of the load condition of R=0.5 for both 12% Cr steel and 1% Cr-Mo-V steel. 4) Crack growth rate of radial direction near surface of 12% Cr rotor is faster than that of transverse direction at the same part because of the difference in residual stresses. 5) Both creep and fatigue strengths of 12% Cr steel are superior to those of 1% Cr-Mo-V steel and the difference is thought the effect of climb and glide controlled creep by solid solution of alloying elements and dispersion of carbides.

The Characteristics of a Fine O/W Emulsion by Nonaqeous Emulsification (비수유화법에 의한 미세 O/W에멀젼의 특성)

  • Lee, S.J.;Ro, Y.C.;Gang, Yun-Seok;Nam, K.D.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.145-152
    • /
    • 1996
  • A fine oil-in-water (O/W) emulsion using nonaqueous emulsification technique was developed and the behaviors of POE(25)octyldodecyl ether in nonaqueous solvent/oil systems were studied by observing the surface tension, interfacial tension, turbidity and transition temperature. It was found that POE(25)octyldodecyl ether existed soluble in nonaqueous solvent while, in aqueous system, it formed micelles. So, when a solvent, like glycerine in which POE(25)octyldodecyl ether has poor solubility, was added, POE(25)octyldodecyl ether moved to the surface. After saturated at surface, POE(25) octyldodecyl ether began to precitate. The mean particle size of the final emulsion was 230nm. Also, the emulsion system was stable at 0, 25, 40, $50^{\circ}C$ and cycling test for a month, while the conventional emulsion system showed unstability. It is concluded that, by pertinent combination of solvents, the adsorption efficiency of surfactant could be improved.

  • PDF

Degradation Estimation of 2.25Cr-1Mo Steel by Ultrasonic Guided Wave (유도초음파를 이용한 2.25Cr-1Mo재의 열화도 평가)

  • Park, Ik-Keun;Park, Un-Su;Lee, Sang-Young;Kwun, Sook-In;Cho, Youn-Ho;Yoon, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.415-424
    • /
    • 2001
  • The destructive method is reliable and widely used for the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials by nondestructive evaluation is strongly desired. In this paper, the use of guided wave was suggested for the evaluation on thermally damaged 2.25Cr-1Mo steel as an alternative way to compensate for limitations of fracture tests. The observation of microstructure variations of the material including carbide precipitation increase and spheroidization near grain boundary was conducted and the correlation with the guided wave features such as energy loss ration and group velocity changes was investigated. Through this study, the feasibility of ultrasonic guided wave evaluation for thermally damaged materials was explored.

  • PDF

The Effect of Pressure on the Phase Transformation in Fe-Ni-C Alloy and Pure Metals (Fe-Ni-C합금과 저융점 순금속의 상변태에 미치는 압력의 영향)

  • An, Haeng-Geun;Kim, Hak-Sin
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.392-397
    • /
    • 2000
  • The effect of pressure on the phase transformation in Fe-30Ni-0.35C Alloy and pure metals was investigated by using PDSC(pressure differential scanning calorimeter). As the pressure increased from 1 atm to 60 atm, the $A_s$points of the ausformed martensite and the marformed martensite in Fe-30Ni-0.35C Alloy were lowered about $2~4^{\circ}C$ at reverse transformation. This is why the volume change came down at phase transition(from martensite to autenite). As the pressure increased from 1 atm to 60 atm, $A_f$ points were constant or slightly increased. This is due to the promotion of carbide precipitation with increasing pressure. The enthalpy change of the ausformed martensite in Fe-30Ni-0.35C Alloy was increased by 10~14J/g. The melting points of the pure metals, Se, Sn, Pb, Zn and Te were slightly increased with increasing pressure. The enthalpy changes of the pure metals at melting were little changed or slightly increased with increasing pressure.

  • PDF

A Study on the Precipitation Behavior of Carbide Particle in L12-type Intermetallic Compound Ni3Al (L12형 금속간화합물 Ni3Al중에 탄화물입자의 석출거동에 관한 연구)

  • Han, Chang-Suk;Koo, Kyung-Wan;Oh, Dong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.241-247
    • /
    • 2006
  • Structural studies have been performed on precipitation hardening discovered in $L1_2-ordered\;Ni_3(Al,Cr)$ containing 0.2 to 3.0 mol% of carbon using transmission electron microscopy (TEM). Fine octahedral precipitates of $M_{23}C_6$ appeared in the matrix by aging at temperatures around 973 K after solution treatment at 1423 K. TEM examination revealed that the $M_{23}C_6$ phase and the matrix lattices have a cube-cube orientation relationship and keep partial atomic matching at the {111} interface. After prolonged aging or by aging at higher temperatures, the $M_{23}C_6$ precipitates then adopt a rod-like morphology elongated parallel to the <100> directions. Deformation at temperature below 973 K, typical Orowan loops were observed surrounding the $M_{23}C_6$ particles. At higher deformation temperatures, the Orowan loops disappeared and the morphology of dislocations at the particle-matrix interfaces suggested the existence of attractive interaction between dislocations and particles. The change of the interaction modes between dislocation and particles with increasing deformation temperature can be considered as a result of strain relaxation at the interface between matrix and particles.

Development of a Synthetic Process for N-Cyclohexylmaleiamic Acid Isobutyl Ester (N-사이크로헥실말레아민산 이소부틸 에스테르의 제조 공정 개발)

  • Moon, Bu-Hyun;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.545-549
    • /
    • 2013
  • For the purpose of development of effective synthetic process of CHMI, a series of experiments were preformed on the preparation of CHMAIE, the intermediate of CHMI. For the first step, CHMA was synthesized by dropwise mixing of cyclohexylamine with maleic anhydride in toluene and 98.2% of theoretical CHMA was obtained by precipitation at $10^{\circ}C$ for 2 hours. The optimum reaction temperature of the esterfication, preparation reaction of CHAMIE from CHMA, was $68^{\circ}C$, and equilibrium conversion at optimum temperature was 98.5%. Equilibrium reaction time decreased with reaction temperature, and 4 hours was taken to reach equilibrium at optimum reaction temperature. Toluene in the final reaction product could be recovered by vacuum distillation. The recovery of toluene was increased with distillation temperature and 98% of toluene could be recovered at $55^{\circ}C$.

The Reduced Steam Consumptions in the Evaporation Process Using a Vapor Recompression (증기 재압축을 활용한 증발공정에서 스팀 절감에 대한 연구)

  • Noh, Sang Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • In this study, modeling and optimization study have been performed to obtain $1,524.58kg\;h^{-1}$ of a solidified NaCl by evaporating a 21.0 wt% of NaCl aqueous solution in order to reduce the steam consumption from $3,139kg\;h^{-1}$ to $496kg\;h^{-1}$ using a two-stage evaporation and a vapor recompression processes. Aspen Plus release 8.8 at AspenTech was utilized for the modeling of two stage evaporation process and PRO/II with PROVISION release 9.4 at Schneider Electric was also used for the simulation of two-stage vapor recompression process with an inter-cooler. For the simulation of the evaporation process containing NaCl aqueous solution, Aspen Plus release 8.8 at AspenTech Inc. was utilized and for the modeling of vapor recompression process PRO/II with PROVISION release at Schneider Electric Inc. For the vapor recompression process, single stage compression and two-stage compression system was compared.