• Title/Summary/Keyword: 석유화학 공정

Search Result 214, Processing Time 0.021 seconds

Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System (흡착광산화 시스템을 이용한 효과적인 SSC 페수처리)

  • Kim, Jong Kyu;Lee, Min Hee;Jung, Yong Wook;Joo, Jin Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF

원자력발전소에서 작업자 인터페이스의 주기적 안전성 검증 방안

  • 민유종;장통일;김수진;이용희
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.403-408
    • /
    • 2003
  • 현대의 산업은 대규모 공정제어 시스템을 통한 작업자와 작업자 인터페이스의 상호 유기적인 관계를 통하여 운영되고 있다. 이러한 유기적인 관계가 고신뢰도 체계를 운영하고 있는 석유화학, 군사, 통신 등의 안전성 문제에 많은 영향을 미치고 있다. 실제 대부분의 안전사고가 시스템 자체에 문제보다는 시스템을 운영하는 인간-기계 연계 체제(Human-Machine Interface; HMI)에서 비롯된 것이다. TMI, 체르노빌, JCO 등의 사고를 통하여 원자력발전소(이하, 원전)에서는 작업자 인터페이스의 품질 문제가 강조되고 있다. 이러한 노력의 일환으로 우리나라도 원전에 대한 10년 주기의 주기적안전성평가(Periodic Safety Review: PSR)에서 인적요소 평가를 포함하고 있다.(중략)

  • PDF

Typical Pseudo-accident Scenarios in the Petrochemical Process (석유화학 공정의 가상사고 시나리오 유형분석)

  • 윤동현;강미진;이영순;김창은
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.75-80
    • /
    • 2003
  • This paper presents a set of typical pseudo-accident scenarios related to major equipments in petrochemical plants, which would be useful for performing such quantitative risk analysis techniques as fault tree analysis, event tree analysis, etc. These typical scenarios address what the main hazard of each equipment might be and how the accident might develop from an "initiating event". The proposed set of accident scenarios consists of total thirteen (13) scenarios specific for five (5) major equipments like reactor, distillation column, etc., and has been determined and screened out of one hundred and twenty-five (125) potential accident scenarios that were generated by performing semi-quantitative risk analysis practically for twenty-five (25) petrochemical processes, considering advices from the operation experts. It is assumed that with simple consideration or incorporation of plant-specific conditions only, the proposed accident scenarios could be easily reorganized or adapted for the relevant process with less time and labor by the safety engineers concerned in the petrochemical industries.ndustries.

Recovery of Nickel from Spent Petroleum Catalyst by Hydrometallurgical Process (습식제련공정에 의한 석유화학 폐촉매로부터 니켈의 회수)

  • Kim, Jong-Hwa;Song, Ju-Yeong;Yang, Seok-Jin;Jeon, Sung-Gyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.273-281
    • /
    • 2010
  • Nickel recovery method was studied by the wet process from the catalyst used in hydrogenation process. Nickel content in waste catalyst was about 16%. At the waste catalyst leaching system by the alkaline solution, selective leaching of nickel was possible by amine complex formation reaction from ammonia water and ammonium chloride mixed leachate. The best leaching condition of nickel from mixed leachate was acquired at the condition of pH 8. LIX65N as chelating solvent extractant was used to recover nickel from alkaline leachate. The purity of recovered nickel was higher than 99.5%, and the whole quantity of nickel was recovered from amine complex.

Study of Developing Simulation Package for Cleaner Production Assessment : Case Study for ECH Process (청정생산평가를 위한 모사기 개발에 관한 연구 : ECH 생산공정 사례 적용)

  • Park, Young Cheol;Chang, Wook;Bak, Sin-Jeong;Wong, Won Hi;Lee, Tai-Yong;Kim, Young Sub;Yun, Chang Han;Cho, Byong Nam;Kim, Yeon Seok
    • Clean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In order to implement clean technology to Petro-chemical process, simulation package of given process should exist. In this paper, reaction and recycling parts of a process are explained using EA process and MEK process respectively so as to explain how to make simulation package. Based on simulation package, several options are generated and feasibility tests are performed.

  • PDF

Enzymatic Biodiesel Synthesis of Waste Oil Contained High Free Fatty Acid (효소 촉매를 이용한 고산가 폐유지 유래 바이오디젤 합성)

  • Jeon, Cheol-Hwan;Lim, Kwang-Mook;Kim, Jae-Kon;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1048-1056
    • /
    • 2018
  • Non-edible oil sources (i.e., Palm Acid Oil, waste animal fat) usually contain relatively high amount of free fatty acids (FFA) that make them inadequate for direct base catalyzed transesterification reaction. Enzymatic biodiesel synthesis can solve several problems posed by the alkaline-catalyzed transesterification, and has certain advantages over the chemical catalysis of transesterification, as it is less energy intensive, allows easy recovery of glycerol and the transesterification of glycerides with high free fatty acid contents. In this study, we synthesized biodiesel through enzymatic catalyzed process using high free fatty acid containing waste oil in biodiesel reactor (1 ton/day) and optimized the biodiesel production processes.

Technology for the Preparation of Ash-free Coal from Low Rank Coal(LRC) (저등급 석탄으로부터 초청정석탄 제조 기술)

  • Lee, Sihyun;Kim, Sangdo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.443-450
    • /
    • 2008
  • Efficient use of low rank coals (LRC) have been investigated as a method to cope with recent high oil price. Among the coals used in industry, lignite and sub-bituminous coals are belong to the LRC, and have abundant deposit and are distributed worldwide, but high moisture contents and self ignition properties inhibits their utilization. In this paper, chemical coal cleaning to produce ash-free coal from LRC has been investigated. Two technologies, that is, UCC(Ultra Clean Coal) process removing ash from coal and Hyper Coal process extracting combustibles from coal were compared with. UCC process has merits of simple and reliable when it compared with Hyper Coal process, but the remaining ash contents werehigher than Hyper Coal. Hyper Coal has ash contents under the 200ppm when raw coal is treated with appropriate solvent and ion exchange materials to remove alkali materials in extracted solution. The ash-free coal which is similar grade with oil can be used as alternate oil in the industry, and also used as a high grade fuel for IGCC, IGFC and other advanced combustion technology.

Application of Risk-Based Inspection with Financial Risk for a Petrochemical Process (석유화학공정에서 재정적 위험도에 의한 위험기반검사의 적용)

  • Kim, Tae-Ok;Lee, Joong-Hee;Choi, Sung-Kyu;Lee, Hern-Chang;Jo, Ji-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.53-60
    • /
    • 2009
  • For the case of the facilities using utilities such as cooling water and steam, risk of the facilities is zero because the consequence of failure (COF) through equipment damage area is zero. Therefore, to improve the estimation method of the risk by COF through equipment damage area in the risk-based inspection (RBI), this study developed the procedures of RBI, in which the risk was estimated by COF through financial loss. And, the RBI program (KS-RBI Ver 3.1) was developed to establish inspection interval based on the risk of the facilities estimated by COF through equipment damage area and financial loss, simultaneously, and the developed RBI program was applied to a petrochemical process. As a result, risks of the facilities estimated by COF through financial loss were similar to risks by COF through the equipment damage area. But, for the case of the facilities using utilities or expensive facilities, the estimation method of the risk by COF through financial loss was more accurate than through equipment damage area.

  • PDF

Energy Conservation and Exergy Comparison of a Fully Thermally Coupled Distillation Column (열복합 증류탑의 에너지 절감과 엑서지 비교)

  • Kim, Byoung Chul;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • The energy conservation and exergy loss of a fully thermally coupled distillation commercialized as the divided wall column are compared with those of a conventional two-column system for ternary separation. The used example for the comparison is the benzene-toluene-m-xylene separation process widely used in a petrochemical plant. The design procedure of the fully thermally coupled distillation column is explained, and the energy requirement is compared using the HYSYS. When the same numbers of trays are utilized, the fully thermally coupled distillation column uses 28.2% less energy and 10.4% more exergy loss. The increase of the exergy loss is due to the additional mixing from the bidirectional inter-linking and the temperature elevation in the reboiler from the increased pressure at the bottom of the main column.

Corrosion Resistance of Al6061-T6 by Organic/Inorganic Hybrid Coating Solution (유/무기하이브리드 코팅액에 의한 Al6061-T6의 내식 특성)

  • Mi-Hyang Park;Ki-Hang Shin;Byoung-Chul Choi;Byung-Hyun Ahn;Gum-Hwa Lee;Ki-Woo Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.591-598
    • /
    • 2023
  • In this study, the corrosion resistance by salt spray was evaluated using A6061-T6 for an electric vehicle battery pack case coated with an organic/inorganic hybrid solution. The lowest curing temperature of 190 ℃ resulted in significant corrosion and pitting. Meanwhile, no corrosion was observed in the coated specimens at 210 ℃ and 230 ℃ except at 210 ℃ - 6 min and 8 min. The surface of the as-received coating specimen observed by FE-SEM exhibited streaks and dents in the rolling direction, but the coating surface was clean. On the 190 ℃ - 6 min coating specimen, which had a lot of corrosion, rolling streaks spread, and dents were caused by corrosion. The 200 ℃ - 12 min coating specimen did not show corrosion, but it showed an etched surface. In the line profile, Si, the main component of the coating solution, was detected the most, and Ti was also detected. In the coating specimens with salt spray, O increased and Si decreased, regardless of corrosion. The peeling rate by adhesion evaluation was 26 - 87% for the 190 ℃ coating specimen, 4 - 83% for the 210 ℃ coating specimen, and 94 - 100% for the 230 ℃ coating specimen. The optimal curing conditions for the coating solution used in this study were 210 ℃ for 10 min.