• 제목/요약/키워드: 석영 용해

검색결과 169건 처리시간 0.024초

Hydrochemical Characteristics of Natural Mineral Water in the Daebo and Bulguksa Granites (대보화강암과 불국사화강암지역 먹는샘물의 수리화학적 특성)

  • 조병욱;성익환;추창오;이병대;김통권
    • The Journal of Engineering Geology
    • /
    • 제8권3호
    • /
    • pp.247-259
    • /
    • 1998
  • Groundwater quality of the natural mineral water was investigated in hydrochemical aspects in order to ensure that mineral water meets stringent health standards. There exist 20 mineral water plants in the Daebo granite and 4 mineral water plants in the Bulguksa granite, respectively. Both granite areas show some differences in water chemistry. The pH, EC, hardness, total ionic contents in groundwater of the Daebo granite area are higher relative to those of the Bulguksa granite area. The content of major cations is in the order of Ca>Na>Mg>K, while that of major anions shows the order of $HCO_3>SO_4$>Cl>F. The fact that the $Ca-Na-HCO_3$ type is most predominant among water types may reflect that the dissolution of plagioclase that is most abundant in granitic rocks plays a most important role in groundwater chemistry. Representative correlation coefficients between chemical species are variable depending on geology. In the Daebo granite area, $Ca-HCO_3(0.84),{\;}Mg-HCO_3(0.81),{\;}SiO_2-Cl(0.74),{\;}Na-HCO_3(0.70)$ show relatively good correlationships. In the Bulguksa granite area, fairly good correlationships are found among some components such as K-Mg(0.93), $K-HCO_3(0.92)$, Mg-Cl(0.92), $Cl-HCO_3(0.91)$, and K-F(0.90). According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite, whereas it is still greatly undersaturated with respect to dolomite, gypsum and fluorite. Based on the phase equilibrium it is clear that groundwater is mostly in equilibrium with kaolinite and becomes undersaturated with respect to feldspars, evolved from the stability area of gibbsite during water-rock interaction. While the activity of silica increases, there is no remarkable increase in the acivities of alkali ions and pH, which indicates that some amounts of silicic acid dissolved from silica phases as well as feldspars were provided to groundwater. It is concluded that chemical evolution of groundwater in granite aquifers may continue to proceed with increasing pH.

  • PDF

Functional Magnetizing Treatment of Natural Quartz and Volcanic Lava Scoria (내추럴 퀄쯔와 화산암재 스코리아의 기능성 마그네타이징 처리)

  • 소대화;소현준;배두안;김정희
    • Journal of the Speleological Society of Korea
    • /
    • 제63호
    • /
    • pp.1-8
    • /
    • 2004
  • The non-magnetic materials with non-conductive showing high structure dispersity were developed on the base of natural quartz and lava-scoria which was collected from Je-ju island in Korea, and treated by methane-chemical technology those were obtained novel properties of magnetization through the analyzing. Depending on the processing conditions and subsequent applications the materials produced by strong methane-chemical reaction (MCR) in alcohol solution showed concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 10~50 nm and showing magnetic, electrical and other properties. It was confirmed in magnetizing process that powders of quartz and lava-scoria produced by MCR were better oil adsorbent as of oleophilic and floating matter on water surface although their specific gravities are comparably more than 1 in quartz or less than unity, as that of water, in lava-scoira. Therefore, it will be Possible and very useful to remove low density and light gravity oil spillage in difficult recovery from sea and inland water contamination spread on water surface, by marine accident and ship sinking accident occurring frequently in recent years, by way of magnetic adsorbent conveyer system in continuous, if it could be built up the mass Production system of water-floating magnetizable oleophilic adsorbent materials with use of iow cost and good Qualify lava-scoria spread on volcano district in Je-ju island. And, there will also be urgent advent of necessity with strong possibility to develop useful applications of various magnetic functional materials include oleophilic adsorbent for removal of sea oil-contaminants and maritime pollutants, and other kinds of various utilities in industrial applications and practical uses of novel functional materials in the fields of environments and health care applications with in deep expectation.

Variations of Temperature, Chemical Component and Helium Gas of Geothermal Water by Earthquake Events in Pohang Area (포항 지열수의 지진에 의한 수온, 화학성분 및 헬륨가스의 변화)

  • Lee, Yong Cheon;Jeong, Chan Ho;Lee, Yu Jin;Kim, Young-Seog;Kang, Tae-Seob
    • The Journal of Engineering Geology
    • /
    • 제31권4호
    • /
    • pp.647-658
    • /
    • 2021
  • In this study, the change of temperature, chemical composition, and helium gas of thermal water in Pohang area was observed from January 2018 to June 2019 in order to interpret the relationship with earthquake events. During observation period earthquakes above M 2.0 within 100 km in a radius from a geothermal well occurred 58 including two earthquake events with a magnitude of 3.0~3.9 and two earthquake events with a magnitude of 4.0~4.9. We introduce a q-factor and earthquake effectiveness (ε) to express the influence of each earthquake as magnitude and distance factors. The geothermal well of 715 m deep was developed in the Bulguksa biotite granite, and the water temperature was observed in the variation from 51.8 to 56.3℃ during monitoring period. At M 4.1 and M 4.6 earthquake events, the increase of geothermal water temperature (𝜟T 2.6~4.5℃) was recorded, and slight change in specific ionic components such as SO4 and Cl, and of chemical types on the Piper diagram were observed. In the 3He/4He vs 4He/20Ne diagram, the original mixing ratio of helium isotope before and after the magnitude 4.1 earthquake was slightly changed from 83.0% to 83.2% of crust-origin 4He, and the from 16.3% to 16.7% of mantle-origin 3He. Hot-cold water mixing ratio before and after earthquakes by using the quartz and chalcedony solubility curves of the silica-enthalpy mixing model was calculated to interpret the temperature change of geothermal water. The model calculation shows the increase of 6.93~7.72% and 1.65~4.94% of hot water ratio at E1 and E2 earthquakes, respectively. Conclusively, the magnitude of earthquake for observable change in the temperature and helium isotope of thermal water is of 4.1 or higher and q-factor value of 30.0 or higher in the study site.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (4) Kimhae Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구: (4) 김해납석광상)

  • Kim, Soo Jin;Choo, Chang Oh;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • 제6권2호
    • /
    • pp.122-144
    • /
    • 1993
  • The Kimhae napseok clay deposit was studied to characterize its mineralogy and genesis. Geology of the deposit is composed of Tertiary volcanic rocks and granodiorite. Tertiary volcanic rocks consist of andesitic tuff with minor interstratified tuffaceous shale, and rhyodacitic tuff. The main ore body of 2.4 to 4 m in thickness developed parallel to the bedding of andesitic tuff bed. Its strike and dip are $N70^{\circ}E-N85^{\circ}E$ and $16^{\circ}NW-32^{\circ}NW$, respectively. Two alteration zones; the propylitic zone of albite-epidote-chlorite-quartz assemblage and advanced argillic zone of pyrophyllite-dickite-alunite-diaspore assemblage are developed. Correlation of $SiO_2$ to $Al_2O_3$ shows no relation in propylitic zone, while a negative linear relation in advanced argillic zone. Chemical variation shows that $SiO_2$, $Al_2O_3$, MgO, CaO, $Na_2O$ and $K_2O$ were leached out during hydrothermal alteration. Pyrophyllite, the most abundant mineral in advanced argillic zone, occurs as low temperature 2M polytype. It is closely associated with dickite, diaspore and alunite. The Hinckley index of dickite is 0.83 showing moderate crystallinity. Na content is increasing in the M site with the increasing content of cations in the R-site. the mole percent of Na replacing K in alunite ranges from 53.2 to 71.6. It is also found that pyrophyllite grows in the dissolution site of diaspore. Plagioclase was albitized. Lowering of pH caused mainly by sulfide and sulfate decomposition resulted in preferential leaching of Si. It is inferred that aluminum released from plagioclase in the volcanic rocks as well as from the tuffaceous shale intercalated in andesitic tuff were the main sources of aluminum required for the formation of clay deposit. pH in hydrothermal fluid decreased from propylitic zone to advanced argillic zone with increasing degree of alteration. Based on experimental data reported in the literature and mineral assemblages, the formation temperature of the deposit ranges 270 to $320^{\circ}C$.

  • PDF

Mineralogical Evolution of Non-Andic Soils, Jeju Island (제주도 Non-Andic 토양의 광물학적 진화)

  • 하대호;유장한;문희수;이규호;송윤구
    • Economic and Environmental Geology
    • /
    • 제35권6호
    • /
    • pp.491-508
    • /
    • 2002
  • While about 80% of Jeju soils are classified as Andisols, the soils derived from volcanic ash in Dangsanbong are not Andisols. There is a significant difference of precipitation in localities of Jeju island. The study area is characterized by the lowest amount of annual rainfall in Jeju Island, and by the layered silicates as dominant solid phase in clay fraction. The purpose of this study was to characterize the mineralogy of the non-Andie soils in detail, especially hydroxy-interlayered silicates. Two major soil horizons are recognized in the soil profile developed in the Dangsanbong area, which can be designated as A and C. The soil pH($H_{2}0$), ranges from 6.6 to 7.3 increasing with depth, is higher than that of typical Andisols(pH<6.0). While the pH(NaF), ranges from 9.49 to 9.81, indicates that significant amount of amorphous phases might be present as exchanging complexes. It is estimated to about 1.542.88 wt% by using chemical selective dissolution. The organic content of surface horizon is about 2 wt%. This soil are composed of quartz, feldspar and olivine as major constituents with minor of silicate clays. Quartz is frequently observed in A and distinctly decreases in its amount with depth, while olivine is dominant phase in C and rarely observed in A. In the <0.2$\mu\textrm{m}$ size fraction, smectite and kaolinite/smectite interstratification are dominant with minor of illite. The amounts of smectite decrease with depth, while the amounts of kaolinite/smecite interstratification increase with depth, which indicates the trend of mineral transformation with increasing the degree of weathering. The proportion of kaolinite in kaolinite/smectite interstratification is about 85%, and is not changed significantly through the profile. In the 2-0.2$\mu\textrm{m}$size fraction, vermiculite, smectite, illite and kaolinite are major components with minor of chlorite. Most of chlorite are interstratified with smectite. Chlorite which is not interstratified with smectite occurs only in surface horizon. The proportion of the chlorite in the chlorite/smectite interstratification is 59-70(%) and increases with depth. Hydroxy-interlayered vermiculite(HIV) with hydroxy-Fe/AI in their interlayers occurs in both A and C horizon. The amounts of hydroxy-Fe/AI decrease with depth. Hydroxy-interlayered smectite(HIS) of which interlayers might be composed of hydroxy-Mg/Al occurs only in C horizon. As the results of mineralogical investigation for the soil profile in the study area, clay minerals might be changed and evolved through the following weathering sequences: 1) Smectite Kaolinite, HIS, Vermiculite, 2) Vermiculite HIV Chlorite.

Mineral Composition and Grain Size Distribution of Fault Rock from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 광물 조성과 입도 분포 특징)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Chang, Tae Woo;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • 제45권5호
    • /
    • pp.487-502
    • /
    • 2012
  • This paper is focused on mineral compositions, microstructures and distributional characters of remained grains in the fault rocks collected from a fault developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using X-ray diffraction (XRD), optical microscope, laser grain size analysis and fractal dimension analysis methods. The exposed fault core zone is about 1.5 meter thick. On the average, the breccia zone is 1.2 meter and the gouge zone is 20cm thick, respectively. XRD results show that the breccia zone consists predominantly of rock-forming minerals including quartz and feldspar, but the gouge zone consists of abundant clay minerals such as chlorite, illite and kaolinite. Mineral vein, pyrite and altered minerals commonly observed in the fault rock support evidence of fault activity associated with hydrothermal alteration. Fractal dimensions based on box counting, image analysis and laser particle analysis suggest that mineral grains in the fault rock underwent fracturing process as well as abrasion that gave rise to diminution of grains during the fault activity. Fractal dimensions(D-values) calculated by three methods gradually increase from the breccia zone to the gouge zone which has commonly high D-values. There are no noticeable changes in D-values in the gouge zone with trend being constant. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. Mineral compositions in the fault zone and peculiar trends in grain distribution indicate that multiple fault activity had a considerable influence on the evolution of fault zones, together with hydrothermal alteration. Meanwhile, fractal dimension values(D) in the fault rock should be used with caution because there is possibility that different values are unexpectedly obtained depending on the measurement methods available even in the same sample.

Study of Utilization of Natural Zeolites as Functional Materials for Water Purification (I): Cation Exchange Property of Domestic Zeolites (천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (I): 국내산 제올라이트의 양이온 교환 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • 제16권2호
    • /
    • pp.135-149
    • /
    • 2003
  • Domestic zeolite ores are mostly composed of Ca-type clinoptilolite, accompanying a little amounts of mordenite. However, other types of zeolite ores rich in ferrierite, heulandite, or mordenite are less commonly found. Based on the quantitative XRD analysis, zeolite contents are determined to be nearly 50∼90 wt%. Impurities (mostly > 10 wt%) in the zeolite ores chiefly consist of quartz, feldspar, smectite, and opal-CT. The determined CEC values ($CEC_{AA}$ ) of powdery samples (grain size: < 125 $\mu\textrm{m}$) of zeolite ores by the Ammonium Acetate method are mostly higher than 100 meq/100 g. Some zeolites from the Guryongpo area, corresponding to the clinoptilolite ore, are measured to be dominantly high in CEC values ranging 170∼190 meq/100 g. Cation exchange property of the zeolite ores varies greatly depending on the types or zeolite species present in the ores. Despite of the lower grade in zeolite content, the $CEC_{AA}$ of ferrierite ore is comparatively high. Compared to this, the $CEC_{AA }$ of heulandite ore is very low, though the zeolite ore exhibits the highest grade ranging up to about 90 wt%. In addition, the CEC values calculated theoretically from the framework composition of clinoptilolite-heulandite series are not consistent with those determined by the cation exchage experiment. The measured $CEC_{AA}$ of clinoptilolite ores are generally higher than those of heulandite ores. This may be due to the higher Ca abundance in exchangeable cation composition and the presence of probable stacking faults in heulandite. The variation of $CEC_{CEC}$ is roughly proportional, though not strictly compatible, to the zeolite contents in clinoptilolite ores. It seems to be caused by the fact that the $CEC_{AA}$ of clinoptilolite locally varies depending on crystal-chemical diversity, i. e., the variation in framework composition (Si/Al) and exchangeable cation composition (especially, the contents of Ca and K). In addition, the determined CEC values ($CEC_{MB}$ ) of zeolite ores by the Methylene Blue method are much higher than those calculated from smectite contents. It suggests a probable reaction of Methylene Blue ion ($C_{16}$ $H_{18}$ $N_3$S+) with larger-pore zeolites than clinoptlolite-heulandite series, i.e., ferrierite and mordenite as well as with smectite. This can be supported by the fact that the ferrierite ore accompanying little amount of smectite has the highest value in CE $C_{MB}$ .

Location Management & Message Delivery Protocol for Multi-region Mobile Agents in Multi-region Environment (다중 지역 환경에서 이동 에이전트를 위한 위치 관리 및 메시지 전달 기법)

  • Choi, Sung-Jin;Baik, Maeng-Soon;Song, Ui-Sung;Hwang, Chong-Sun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제34권11호
    • /
    • pp.545-561
    • /
    • 2007
  • Location management and message delivery protocol is fundamental to the further development of mobile agent systems in a multi-region mobile agent computing environment in order to control mobile agents and guarantee message delivery between them. However, previous works have some problems when they are applied to a multi-region mobile agent computing environment. First, the cost of location management and message delivery is increased relatively. Second, a tracking problem arises. finally, cloned mobile agents and parent-child mobile agents do not get dealt with respect to location management and message delivery. In this paper, we present a HB (Home-Blackboard) protocol, which is a new location management and message delivery protocol in a multi-region mobile agent computing environment. The HB protocol places a region server in each region and manages the location of mobile agents by using intra-region migration and inter-region migration. It also places a blackboard in each region server and delivers messages to mobile agents when a region server receives location update form them. The HB protocol can decrease the cost of location update and message passing and solve the tracking problem with low communication cost. Also, this protocol deals with the location management and message passing of cloned mobile agents and parent-child mobile agents, so that it can guarantee message delivery of these mobile agents and pass messages without passing duplicate messages.

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • 제8권4호
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.

Hydrochemistry and Occurrence of Natural Radioactive Materials within Borehole Groundwater in the Cheongwon Area (청원지역 시추공 지하수의 수리화학 및 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Moon-Su;Lee, Young-Joon;Han, Jin-Seok;Jang, Hyo-Geun;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • 제21권2호
    • /
    • pp.163-178
    • /
    • 2011
  • A test borehole was drilled in the Cheongwon area to investigate the relationship between geochemical environment and the natural occurrence of radioactive materials (uranium and Rn-222) in borehole groundwater. The borehole encountered mainly biotite schist and biotite granite, with minor porphyritic granite and basic dykes. Six groundwater samples were collected at different depths in the borehole using the double-packed system. The groundwater pH ranges from 5.66 to 8.34, and the chemical type of the groundwater is Ca-$HCO_3$. The contents of uranium and Rn-222 in the groundwater are 0.03-683 ppb and 1,290-7,600 pCi/L, respectively. The contents of uranium and thorium in the rocks within the borehole are 0.51-23.4 ppm and 0.89-62.6 ppm, respectively. Microscope observations of the rock core and analyses by electron probe microanalyzer (EPMA) show that most of the radioactive elements occur in the biotite schist, within accessory minerals such as monazite and limenite in biotite, and in feldspar and quartz. The high uranium content of groundwater at depths of -50 to -70 m is due to groundwater chemistry (weakly alkaline pH, an oxidizing environment, and high concentrations of bicarbonate). The origin of Rn-222 could be determined by analyzing noble gas isotopes (e.g., $^3He/^4He$ and $^4He/^{20}Ne$).