• Title/Summary/Keyword: 석영용해

Search Result 44, Processing Time 0.027 seconds

Diagenetic History of the Ordovician Chongson Limestone in the Chongson Area, Kangwon Province, Korea (강원도 정선 지역 오르도비스기 정선석회암의 속성 역사)

  • Bong, Lyon-Sik;Chung, Gong-Soo
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.449-468
    • /
    • 2000
  • The Ordovician Chongson Limestone deposited in the carbonate ramp to the rimmed shelf shows diverse diagenetic features. The marine diagenetic feature appears as isopachous cements surrounding ooids and peloids. Meteoric diagenetic features are recrystallized finely and coarsely crystalline calcite, evaporite casts filled with calcite, and isopachous sparry calcite surrounding ooid grains. Shallow burial diagenetic features include wispy seam, microstylolite, and dissolution seam whereas deep burial features include stylolite, burial cements. blocky calcite with twin lamellae, and poikilotopic calcite. Dolomites consist of very finely to finely crystalline mosaic dolomite formed as supratidal dolomite, disseminated dolomite of diverse origin, patchy dolomite formed from bioturbated mottles, and saddle dolomite of burial origin. Silicified features include calcite-replacing quartz and fracture-filling megaquartz. Burial cements characterized by poikilotopic texture show ${\delta}^{18}$O value of -10.4 %$_o$ PDB, ${\delta}^{13}$C value of -1.0%$_o$ PDB and 504ppm Sr, 3643ppm Fe, and 152ppm Mn concentrations. Finely and coarsely crystalline limestones show similar ${\delta}^{18}$O and ${\delta}^{13}$C value to those of burial cements; however, they show lower Sr and higher Fe and Mn concentrations than burial cements. This suggests that very finely and coarsely crystalline limestones were recrystallized in freshwater and then they were readjusted geochemically in the burial setting whereas the burial cements were formed in relatively high temperature and low water/rock ratio conditions. Very finely and finely crystalline mosaic dolomites with ${\delta}^{18}$O value of -8.2%$_o$ PDB, ${\delta}^{13}$C value of -1.9 %$_o$ PDB, and 213ppm Sr, 3654ppm Fe, and 114ppm Mn concentrations, respectively are interpreted to have been formed penecontemporaneously in supratidal flat and then recrystallized in the low water/rock ratio burial environment. Geochemical data suggest that the low water/rock ratio burial environment was the dominant diagenetic setting in the Chongson Limestone. The Chongson Limestone has experienced marine and meteoric diagenesis during early diagenesis. With deposition of Haengmae and Hoedongri formations part of the Chongson Limestone was buried beneath these formations and it experienced shallow burial diagenesis. During the Devonian the Chongson Limestone was tectonically deformed and subaerially exposed. During the Carboniferous to the Permian about 3.3km thick Pyongan Supergroup was deposited on the Chongson Limestone and the Chongson Limestone was in deep burial depths and stylolite, burial cements, blocky calcite and saddle dolomite were formed. After this burial event the Chongson Limestone was subaerially exposed during the Mesozoic and Cenozoic by three periods of tectonic disturbance including Songnim, Daebo and Bulguksa disturbance. Since the Bulguksa disturbance during Cretaceous and early Tertiary the Chongson Limestone has been subaerially exposed.

  • PDF

A Study on the Variation of the Surface and Groundwater Flow System Related to the Tunnel Excavation in DONGHAE Mine Area (II) - Hydrogeochemical Consideration (동해신광산 터널굴착공사와 관련된 지표수 및 지하수의 유동변화에 대한 조사연구 (II)-수리지구화학적 고찰)

  • 전효택;이희근;이종운;이대혁;류동우;오석영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.27-40
    • /
    • 1997
  • The hydrogeochemical study on the 15 natural waters was carried out in the vicinity of tunnel excavation site of Donghae largely composed of granite and limestone. The water samples can be classified based on their chemical characteristics into two groups; waters draining in the granitic region(group 1) and the limestone region(group 2). This classification was also confirmed by statistical examination through cluster analysis, and the tunnel seepage waters collected at the same site appear to be included in group 1 and 2 by their sampling period, respectively. According to factor analysis, the waters of group 1 art mainly represented by the weathering of plagioclase to kaolinite and those of group 2 are characterized by the dissolution of calcite. Different properties of the tunnel seepage waters are thought to be resulted from the effective waterproofing processes conducted during the sampling interval to the surface and subsurface leakage zones at the granitic region, which contributed to the change of groundwater flow system. However both the tunnel seepage waters seem to have thermodynamically interacted with rock-forming minerals in their wallrocks. The mixing ratio of the waters from two groups and water-rock interactions are evaluated quantitatively for the tunnel seepage waters through the mass balance approach, and the results are identical with the previous conclusions in this study.

  • PDF

Determination of stoichiometric Ca/P ratio in biphasic calcium phosphates using X-ray diffraction analysis (X-선 회절분석을 이용한 biphasic calcium phosphate 분말의 화학양론적 Ca/P 비율 확인)

  • Song, Yong-Keun;Kim, Dong-Hyun;Kim, Tae-Wan;Kim, Yang-Do;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2010
  • The calcium to phosphate ratio (Ca/P) in biphasic calcium phosphates powders using X-ray diffraction analysis (XRD) was characterized. The BCP powders with various stoichiometric Ca/P molar ratio were synthesized with coprecipitation process and calcination. Compositions of the powders with Ca/P molar ratio between 1.5 and 1.67 were subjected to starting Ca/P molar ratio, pH = 10, and thermal treatment up to $900^{\circ}C$. The structural, morphological and chemical characterizations for BCP powders with stoichiometric Ca/P ratio were carried out with scanning electron microscope (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) and a phase quantification was investigated by XRD. The solubility of HAp, $\beta$-TCP, and BCP powders was tested in the phosphate buffer solution (PBS) at $36.5^{\circ}C$ and pH = 7.4.

Studies on Magnetic Properties of Die-upset Pr-Fe-B Magnets (Die-upset법에 의한 Pr-Fe-B자석의 자기적 성질에 관한 연구)

  • 이경섭;서수정;박현순;이병규;정지연
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 1993
  • Starting ingot of $Pr_{15}Fe_{77}B_{8}$ were prepared by vacuum induction melting under argon atmosphere. The ingot were induction melted in a quartz crucible and then ejected as a molten alloy throuth a 0.6 mrn orifice onto a rotating cop¬per wheel. An anisotropic magnet was prepared from ribbon by hot deformation techniques. A fully dense precursor magnet first made by pressing ribbons at $680^{\circ}C$ under a pressure of $21.8\;kg/mm^{2}$. A substantially oriented magnets were obtained by die-upset under various conditions. As the compression ratio increases, the $B_{r}$ value increases pronouncedly though $_{i}H_{c}$ decreases. Also, XRD analyses show increased diffraction peak from (006). From these results, it can be known that the magnetic easy axis was formed along the compression axis. As the die-upset speed increases, $_{i}H_{c}$ increases though $B_{r}$ decreases. The $B_{r}$ increases up to $750^{\circ}C$ of die-upset temperature and above this temperature decreases. The value of $4{\pi}M_{s}$ of the $Pr_{15}Fe_{77}B_{8}$ alloy prepared is found to be 11.8 KG. When the alloy was compressed by 0.8 under the die-upset speed of 0.05 m/sec at $750^{\circ}C$, $B_{r}$ was 11.0 KG indicating that the alloy has excellent magnetic anistropy. However, this alloy has some limitation because of low $_{i}H_{c}$.

  • PDF

Mineraloty and Genesis of the Sericite Ore from the Samsung Mine Area (삼성광산 일대의 견운모광화작용에 대한 광물학적 및 성인적 연구)

  • Kim Won-Sa;Choi Jun-Kyu
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.674-682
    • /
    • 2005
  • The Samsung mine is located in Jeongsan-myeon, Cheongyang-gun, Chungcheongnam-do, and is produces sericite ores. The purpose of this study is to investigate the geology and mineralogy of sericite one and its host-rock together with the alteration processes and age of sericitization. Geological survey, polarizing microscopy, X-ray powder diffraction, electron microprobe analysis, X-ray fluorescent analysis, differential thermal analysis, and K/Ar isotope study have been employed for this study. The mine area is composed of Precambrian granite-gneiss and mica schist, and also Jurassic biotite granite. Serictization has occured within the granite-gneiss, and is interpreted to be formed by hydrothermal alteration. The sericite was formed by the breakdown of orthoclase, plagioclase, and biotite, respectively. With sericitization intensity increase, $SiO_2\;and\;Na_2O$ contents are decreased, while $Al_2O_3\;and\;K_2O$ increased. The formation age of sericite has been determined to be Jurassic, which corresponds well to the intrusion age of the biotite granite nearby.

A Study on the Nonstoichiometry of the Iron Oxide System (산화철계의 비화학양론에 관한 연구)

  • Choi, Jae-Shi;Yo, Chul-Hyun;Choi, Sung-Nack
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.337-345
    • /
    • 1973
  • The nonstoichiometry of the iron oxide system has been studied by analyzing the weight loss of a sample, measured by using a quartz microbalance, in a temperature range from $0^{\circ}C$ to $1200^{\circ}C$ under oxygen pressures from $10^{2}mmHg$ to $10^{-4}mmHg$. The Y values of the formula, $FeO_{1+\gamma}$, that have been obtained by this means for various conditions of temperature and pressure in this range are considered to be more accurate than values obtained by methods requiring thste quenching of the sample before measurements are made. The plots of log Y vs $log PO_2$ (or $log Y =_n log PO_2$) show linearity and n calculated from the slope of the plot is about 1/10 at $1000^{\circ}C$, indicating a difference between the nonstoichiometric and oxidation mechanisms. The condition for the formation of stoichiometric FeO was determined to be $1200^{\circ}C$ under $10^{-3}mmHg$ of $O_2$ and the composition of the oxide under standard conditions was $FeO_{1.11185}$. As in general more oxygen dissolves into the oxide system at lower temperatures and higher oxygen pressures, the deviation from stoichiometric FeO is greater under those conditions. A comparison of the change in conductivity of the sample indicates that full phase transition does not take place with conductivity transition.

  • PDF

Corrosion of Calcareous Rocks and Ground Subsidence in the Muan Area, Jeonnam, Korea (전남 무안지역에 분포하는 석회질암의 용식작용과 지반침하)

  • Ahn, Kun-Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.47-58
    • /
    • 2007
  • This study examines the distribution of basement rocks in Gyochon-ri, Muan-eup, Muan-gun, Jeonnam where ground subsidence occurred in June 2005, and traces corrosion of limestone. Mica schist and rhyolite are distributed in the surface of the study area, but thick limestone layer with large and small caverns are distributed underground. A horizon of limestone with maximum width of 300 m and 4 km of length was found along the detour which is in the north of pound subsidence. Such identification of limestone presence would be very useful to predict potential ground subsidence. Limestone in this area was disturbed by fold and fault due to severe shearing deformation. Small caverns were frequently found in anticline part of folds formed in limestone layer. Schists with different thicknesses were intercalated in the limestone with shearing deformation and consist of sheet silicate minerals (chlorite and mica) and quartz. In sections of weathered specimen, it is shown that biotite of schist part was altered into chlorite and corrosion of calcite around the schist followed. This suggest that ground water permeated between intercalated sheet silicate minerals and corrosion of limestone began. And small caverns were generated where active corrosion occurred. This study suggests that because of many reasons (for instance, reclamation of the Bulmu reservior and excess pumping), cavern water level was lowered and cave sediments were removed, and it caused ground subsidence to occur.

Dissolution behavior of octacalcium phosphate added hydroxyapatite (수산화아파타이트가 첨가된 옥타칼슘포스페이트의 분해거동)

  • Ha, Yebeen;Yoo, Kyung-Hyeon;Kim, Somin;Yoon, Seog Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.203-211
    • /
    • 2021
  • Octacalcium phosphate(OCP, Ca8H2(PO4)6·5H2O) is one of biodegradable calcium phosphate materials with osteoconductivity and biocompatibility. It has the advantage of rapid bone formation and resorption due to the property of stimulating stromal cells to differentiate into osteoblasts. However, if OCP is inserted in body, it is immediately decomposed without maintaining of its shape as scaffolds due to their weak cohesive force between powder. On the other hand, hydroxyapatite (HA, Ca10(PO4)6(OH)2), which has a crystal structure similar to that of OCP, remains in the body without decomposition until the bone defect is restored. In this study, the degradation behavior of OCP/HA disc with different amount of HA in SBF (simulated body fluid) solution was characterized in terms of the weight loss, pH variation and microstructure change with immersion duration in SBF solution. As a result, the OCP/HA disc was not quickly decomposed and maintained its own shape for 2 weeks regardless of HA content. In particular, the surface of 40HA specimen was uniformly dissolved and then CDHA (calcium deficient hydroxyapatite) phase were formed onto the surface of disc after 7 days in SBF solution. It would be suggested that the 40HA specimen would be suitable candidate material as the scaffolds for the restoration of bone defect.

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (4) Kimhae Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구: (4) 김해납석광상)

  • Kim, Soo Jin;Choo, Chang Oh;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.122-144
    • /
    • 1993
  • The Kimhae napseok clay deposit was studied to characterize its mineralogy and genesis. Geology of the deposit is composed of Tertiary volcanic rocks and granodiorite. Tertiary volcanic rocks consist of andesitic tuff with minor interstratified tuffaceous shale, and rhyodacitic tuff. The main ore body of 2.4 to 4 m in thickness developed parallel to the bedding of andesitic tuff bed. Its strike and dip are $N70^{\circ}E-N85^{\circ}E$ and $16^{\circ}NW-32^{\circ}NW$, respectively. Two alteration zones; the propylitic zone of albite-epidote-chlorite-quartz assemblage and advanced argillic zone of pyrophyllite-dickite-alunite-diaspore assemblage are developed. Correlation of $SiO_2$ to $Al_2O_3$ shows no relation in propylitic zone, while a negative linear relation in advanced argillic zone. Chemical variation shows that $SiO_2$, $Al_2O_3$, MgO, CaO, $Na_2O$ and $K_2O$ were leached out during hydrothermal alteration. Pyrophyllite, the most abundant mineral in advanced argillic zone, occurs as low temperature 2M polytype. It is closely associated with dickite, diaspore and alunite. The Hinckley index of dickite is 0.83 showing moderate crystallinity. Na content is increasing in the M site with the increasing content of cations in the R-site. the mole percent of Na replacing K in alunite ranges from 53.2 to 71.6. It is also found that pyrophyllite grows in the dissolution site of diaspore. Plagioclase was albitized. Lowering of pH caused mainly by sulfide and sulfate decomposition resulted in preferential leaching of Si. It is inferred that aluminum released from plagioclase in the volcanic rocks as well as from the tuffaceous shale intercalated in andesitic tuff were the main sources of aluminum required for the formation of clay deposit. pH in hydrothermal fluid decreased from propylitic zone to advanced argillic zone with increasing degree of alteration. Based on experimental data reported in the literature and mineral assemblages, the formation temperature of the deposit ranges 270 to $320^{\circ}C$.

  • PDF