하천의 개발 및 보전 계획을 수립하는 데에 있어 자연하천의 부유사량 및 총유사량을 계측하는 것은 매우 중요하다. 우리나라에서는 매년 국내 자연하천을 대상으로 부유사량을 실측하고 실측 부유사량을 바탕으로 수정 아인슈타인 방법을 적용해 총유사량을 산정하고 있으나 이 또한 홍수기에 국한되어 있다. 가장 일반적인 유사량 계측 방법인 시료 채집에 의한 방법은 많은 노력과 비용을 수반하기 때문에 유사량 관측소와 관측 빈도를 늘릴 수 없는 실정이다. 최근에는 ADCP 음파 신호의 후방산란도가 부유사 농도에 따라 증가한다는 성질을 이용해 부유사 농도 계측에 ADCP를 이용하고자 하는 노력이 계속되고 있다. 이러한 특성을 이용해 본 연구에서는 전라남도 나주시에 위치한 남평교 자동유량관측소에 설치된 횡방향 ADCP (H-ADCP)를 대상으로 서포트 벡터 회귀(SVR)를 적용한 실시간 유사량 모니터링 모형을 제안하였다. 여기서 제시하는 유사량산정 모형은 크게 유량과 초음파 산란도를 입력 변수로 해 부유사 농도를 산정하는 서포트 벡터 회귀 모형과 첫 번째 모형으로부터 산정된 부유사 농도와 흐름 정보를 이용해 총유사량을 산정하는 모형으로 구성되어 있다. 개발된 SVR 부유사량 및 총유사량 산정 모형의 정확도가 결정계수(R2) 기준으로 각각 0.82, 0.90 으로 나타났다. 주목할 점은, 본 연구에서 제시하는 SVR 모형을 이용해 멱함수 기반 유사량 관계식으로는 예측할 수 없는 유사량의 이력현상을 재현해낼 수 있다는 것이다. 본 연구에서 제시하는 H-ADCP 기반 총유사량 모니터링 방법은 기존 자동 유량 관측소 시설을 그대로 이용할 수 있다는 장점이 있다. 따라서 실무 적용 시 낮은 추가비용으로 양질의 유사량 모니터링이 가능할 것으로 기대된다.
Damage to temporary facilities and structural members caused by excessive loads in the field continue to occur. If the load can be monitored in advance, the risk can be prevented. In this study, a load cell sensor is installed under the system support, and load data is wirelessly transmitted through a Bluetooth AP(wireless). Risk prediction system is proposed through an construction alarm when an abnormal load occurs through real-time multi-point monitoring by sensor location.
지능형 빌딩 환경 모니터링 시스템과 같이 실내에서 센서 네트워크를 이용하여 환경 데이터를 수집하는 네트워크가 점점 확산되고 있다. 이와 같은 건축물 내에서의 무선 센서 네트워크는 랜덤하게 센서 노드들이 뿌려지는 것이 아니라, 사람의 의지대로 배치가 된다. 따라서 위치정보를 모르는 상황의 무선 센서 네트워크들이 가지는 라우팅 방법을 사용하는 것이 아니라 더 간결하면서 강한 네트워크 유지 능력을 가지는 라우팅 방법이 사용되게 된다. 본 논문에서는 트리 라우팅을 이용한 건물 환경 모니터링 시스템에 에너지 효율을 높이기 위하여 네트워크의 상황을 고려한 SVM을 이용한 동적 라우터 선택기법을 포함한 동적 트리 라우팅 기법에 대한 연구와 이의 구현을 보이고 있다.
뇌전도는 뇌 활동 시 발생하는 뇌 세포 간 상호작용으로 생성된 전기적 활동이며, 손동작 시 뇌 활동으로 인해 뇌전도가 발생한다. 본 연구에서는 16채널 뇌전도 측정 장비를 이용하여 손동작 전과 좌 혹은 우 손동작 시 발생되는 뇌전도를 측정하였으며, 측정된 데이터는 지도 학습 모델인 서포트 벡터 머신으로 분류하며, 서포트 벡터 머신의 학습 시간을 단축 위해 동작관련 정보 손실을 최소화하고, 뇌전도 정보를 축약할 수 있는 필터링을 통한 특징 추출과 벡터 차원 축소 기법을 제안한다. 분류 결과, 전두엽 부위의 전극에서 손동작 전 상태-손동작사이에서 평균 72.7 %의 정확도로 분류되었다.
전력 그리드 시스템이 ICT 기술의 발달로 지능화됨에 따라 그리드에 연결된 사용자의 전력 사용량 정보를 획득하고 분석할 수 있게 되었다. 본 논문에서는 스마트 그리드에서 경제적 손실을 일으키는 주된 원인인 에너지 절도 문제를 특징 선택과 서포트 벡터 머신을 이용해서 해결한다. 본 논문에서 제안하는 시스템의 데이터 전처리 과정은 다섯 단계다. 전처리 단계에서 필터링 기반 특징 선택 방법인 분산 분석 기반 방식과 상호의존정보 기반 방식을 활용해 특징을 선택한다. 시뮬레이션 결과 입력 데이터의 특징을 그대로 이용하는 것보다 상호의존정보 기반 특징 선택을 이용하면 적은 입력 특징을 이용해 서포트 벡터 머신 기반 분류기로부터 더 높은 분류 성능을 얻어 낼 수 있다.
장방형 평면의 한쪽 끝에 자리잡아 벽체와 천장 등의 1차 혹은 2차반사음을 많이 확보할 수 있는 슈박스 콘서트홀의 무대와는 달리, 객석으로 둘러싸인 무대의 빈야드 콘서트홀은 무대 위의 연주자들이 자신이나 다른 연주자들의 연주음 크기나 화음을 모니터링 할 수 있는 초기반사음이 절대 부족하다. 무대 주변벽에서의 반사음을 기대할 수 있지만 무대라이저와 그 위의 연주자들에 의해 상당부분 가려지기 때문에 그 효과는 극히 제한적이다. 무대반사판(ensemble reflector)은 무대의 상부에 설치하여 연주자들의 모니터링을 가능하게 함으로써 연주음의 앙상블을 향상시키는 데 기여할 수 있는 효과적인 수단이다. 2,000여석 규모의 커다란, 따라서 높은 천장으로 인해 유효한 초기 천장반사음을 확보하기 힘든 대형 빈야드 콘서트홀에서 적절한 위치와 형태와 면적을 갖는 효율적인 무대반사판을 설계하고 무대서포트에 관한 정량적 지표를 토대로 그 효과를 검증하였다.
자연하천에서의 유사량 계측은 하천공학적으로 중요한 의미를 가지지만 계측 방법의 비용 문제로 유사량 실측에 어려움이 따른다. 특히 소류사량 계측의 어려움으로 인해 주기적인 유사량 모니터링의 대부분이 부유사 농도 계측에만 제한되어 있는 실정이다. 본 연구에는 자동유량관측소에 설치된 횡방향 도플러 유속계(H-ADCP)의 후방산란값과 부유사 농도의 상관관계를 이용해 실시간으로 부유사 농도를 산정하고 총유사량을 산정하는 서포트벡터회귀 모형을 제안한다. 제안하는 실시간 총유사량 모니터링 시스템은 부유사 농도 모형과 수정 아인슈타인 방법을 모사하는 총유사량 산정 모형으로 구성된다. 각 모형의 매개변수와 입력변수는 K겹 교차검증 기반 격자검색 방법과 재귀적 특징 제거법을 이용해 결정되었다. 교차검증에서 부유사 농도 모형과 총유사량 산정 모형의 R2가 각각 0.885와 0.860으로 유사량-유량 관계곡선에 비해 정확한 것으로 나타났다. 시계열 유사량 관측을 통해 새로 제시되는 실시간 총유사량 관측 시스템이 자연하천에서 발달하는 유사량-유량 이력관계와 미세한 유량 변화에서 나타나는 유사량 변화를 성공적으로 관측할 수 있음을 확인했다. 본 연구에서 제안하는 방법은 마찰경사나 부유사 입도 등의 수리 조건을 가정할 필요 없이 H-ADCP의 원시자료만으로 부유사 농도와 총유사량을 산정할 수 있어 기존 방법에 비해 불확도가 적으며 경제적이다. 본 방법은 H-ADCP가 설치된 유사량 관측소에 광범위하게 적용 가능해 유사량 모니터링의 시간적 해상도를 경제적으로 크게 줄일 수 있을 것으로 기대된다.
파산감지, 스팸메일 감지, 불량품 감지 등 일상생활에서 불균형적인 이항 분류 문제를 다양하게 접할 수 있다. 반응변수의 클래스의 비율이 상당히 불균형한 경우 이항 분류 모형의 예측 성능이 좋지 않다는 점은 이미 잘 알려진 사실이다. 이러한 문제점을 해결하기 위해 그 동안 오버 샘플링, 언더 샘플링, SMOTE와 같은 여러 샘플링 기법이 개발되어 왔다. 본 연구에서는 분류 모형으로 많이 사용되는 기계학습모형으로 로지스틱 회귀모형, Lasso, 랜덤포레스트, 부스팅, 서포트 벡터 머신을 위의 샘플링 기법들과 결합하여 사용했을 때의 예측 성능을 살펴보았다. 실질적인 예측 성능의 개선 여부를 확인하기 위해 네 개의 실제 자료를 분석하였다. 이와 더불어, 샘플링 방법이 사용될 때 주의해야 할 점에 대해서 강조하였다.
급변하는 주변상황이나 대형차량과 같은 큰 지형지물에 센서가 가려질 경우에는 센서만을 이용한 완전 자율주행에는 한계가 따른다. 이에 자율주행을 위해서 센서를 이용한 한계점을 극복할 수 있도록 정밀한 도로지도를 부가적으로 이용하는 방법이 사용되고 있다. 본 연구는 국토지리정보원에서 제공하는 지상 MMS(Mobile Mapping System)로 취득된 3차원 점군자료를 이용하여 도로 객체를 분류하는 연구를 수행하였다. 본 연구를 위해서 원본 3차원 점군자료를 전처리 하고, 지면과 비지면점을 분리하기 위한 필터링 기법을 선정하였다. 또한 차선, 가로등, 안전펜스 등에 해당하는 도로객체를 초기 분할한 후 분할된 객체를 머신러닝의 종류인 서포트 벡터 머신을 이용하여 학습시킨 후 분류하였다. 학습데이터는 분할된 도로객체에서 추출한 고유값을 이용한 기하학적 요소와 높이정보만을 사용하였으며 분류결과 전체정확도는 87%, 카파계수는 0.795로 나타났다. 향후 도로객체의 분류를 위하여 기하학적인 요소 뿐만 아니라 다양한 항목을 추가한다면 분류정확도가 높아질 것으로 예상된다.
하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.