• 제목/요약/키워드: 서포트 링

검색결과 26건 처리시간 0.03초

H-ADCP와 서포트벡터회귀를 이용한 실시간 하천 유사량 모니터링 방법 (Real-time fluvial sediment load monitoring method using H-ADCP and support vector regression)

  • 노효섭;손근수;김동수;박용성
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.25-25
    • /
    • 2022
  • 하천의 개발 및 보전 계획을 수립하는 데에 있어 자연하천의 부유사량 및 총유사량을 계측하는 것은 매우 중요하다. 우리나라에서는 매년 국내 자연하천을 대상으로 부유사량을 실측하고 실측 부유사량을 바탕으로 수정 아인슈타인 방법을 적용해 총유사량을 산정하고 있으나 이 또한 홍수기에 국한되어 있다. 가장 일반적인 유사량 계측 방법인 시료 채집에 의한 방법은 많은 노력과 비용을 수반하기 때문에 유사량 관측소와 관측 빈도를 늘릴 수 없는 실정이다. 최근에는 ADCP 음파 신호의 후방산란도가 부유사 농도에 따라 증가한다는 성질을 이용해 부유사 농도 계측에 ADCP를 이용하고자 하는 노력이 계속되고 있다. 이러한 특성을 이용해 본 연구에서는 전라남도 나주시에 위치한 남평교 자동유량관측소에 설치된 횡방향 ADCP (H-ADCP)를 대상으로 서포트 벡터 회귀(SVR)를 적용한 실시간 유사량 모니터링 모형을 제안하였다. 여기서 제시하는 유사량산정 모형은 크게 유량과 초음파 산란도를 입력 변수로 해 부유사 농도를 산정하는 서포트 벡터 회귀 모형과 첫 번째 모형으로부터 산정된 부유사 농도와 흐름 정보를 이용해 총유사량을 산정하는 모형으로 구성되어 있다. 개발된 SVR 부유사량 및 총유사량 산정 모형의 정확도가 결정계수(R2) 기준으로 각각 0.82, 0.90 으로 나타났다. 주목할 점은, 본 연구에서 제시하는 SVR 모형을 이용해 멱함수 기반 유사량 관계식으로는 예측할 수 없는 유사량의 이력현상을 재현해낼 수 있다는 것이다. 본 연구에서 제시하는 H-ADCP 기반 총유사량 모니터링 방법은 기존 자동 유량 관측소 시설을 그대로 이용할 수 있다는 장점이 있다. 따라서 실무 적용 시 낮은 추가비용으로 양질의 유사량 모니터링이 가능할 것으로 기대된다.

  • PDF

시스템 서포트 하중 모니터링 센서를 이용한 위험 예측시스템 연구 (A Study on the Risk Prediction System Using System Support Load Monitoring Sensor)

  • 심학보;석원균;박순전
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.186-187
    • /
    • 2020
  • Damage to temporary facilities and structural members caused by excessive loads in the field continue to occur. If the load can be monitored in advance, the risk can be prevented. In this study, a load cell sensor is installed under the system support, and load data is wirelessly transmitted through a Bluetooth AP(wireless). Risk prediction system is proposed through an construction alarm when an abnormal load occurs through real-time multi-point monitoring by sensor location.

  • PDF

지능형 건축물 환경 모니터링 시스템에서의 서포트 벡터 머신을 이용한 동적 트리 라우팅에 대한 연구 (Study of Dynamic Tree Routing Using Support Vector Machine for Intelligent Building)

  • 이민우;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1895-1896
    • /
    • 2008
  • 지능형 빌딩 환경 모니터링 시스템과 같이 실내에서 센서 네트워크를 이용하여 환경 데이터를 수집하는 네트워크가 점점 확산되고 있다. 이와 같은 건축물 내에서의 무선 센서 네트워크는 랜덤하게 센서 노드들이 뿌려지는 것이 아니라, 사람의 의지대로 배치가 된다. 따라서 위치정보를 모르는 상황의 무선 센서 네트워크들이 가지는 라우팅 방법을 사용하는 것이 아니라 더 간결하면서 강한 네트워크 유지 능력을 가지는 라우팅 방법이 사용되게 된다. 본 논문에서는 트리 라우팅을 이용한 건물 환경 모니터링 시스템에 에너지 효율을 높이기 위하여 네트워크의 상황을 고려한 SVM을 이용한 동적 라우터 선택기법을 포함한 동적 트리 라우팅 기법에 대한 연구와 이의 구현을 보이고 있다.

  • PDF

서포트 벡터 머신 기반 손동작 뇌전도 구분에 대한 연구 (SVM-Based EEG Signal for Hand Gesture Classification)

  • 홍석민;민창기;오하령;성영락;박준석
    • 한국전자파학회논문지
    • /
    • 제29권7호
    • /
    • pp.508-514
    • /
    • 2018
  • 뇌전도는 뇌 활동 시 발생하는 뇌 세포 간 상호작용으로 생성된 전기적 활동이며, 손동작 시 뇌 활동으로 인해 뇌전도가 발생한다. 본 연구에서는 16채널 뇌전도 측정 장비를 이용하여 손동작 전과 좌 혹은 우 손동작 시 발생되는 뇌전도를 측정하였으며, 측정된 데이터는 지도 학습 모델인 서포트 벡터 머신으로 분류하며, 서포트 벡터 머신의 학습 시간을 단축 위해 동작관련 정보 손실을 최소화하고, 뇌전도 정보를 축약할 수 있는 필터링을 통한 특징 추출과 벡터 차원 축소 기법을 제안한다. 분류 결과, 전두엽 부위의 전극에서 손동작 전 상태-손동작사이에서 평균 72.7 %의 정확도로 분류되었다.

특징 선택과 서포트 벡터 머신을 활용한 에너지 절도 검출 (Energy Theft Detection Based on Feature Selection Methods and SVM)

  • 이지영;선영규;이승우;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.119-125
    • /
    • 2021
  • 전력 그리드 시스템이 ICT 기술의 발달로 지능화됨에 따라 그리드에 연결된 사용자의 전력 사용량 정보를 획득하고 분석할 수 있게 되었다. 본 논문에서는 스마트 그리드에서 경제적 손실을 일으키는 주된 원인인 에너지 절도 문제를 특징 선택과 서포트 벡터 머신을 이용해서 해결한다. 본 논문에서 제안하는 시스템의 데이터 전처리 과정은 다섯 단계다. 전처리 단계에서 필터링 기반 특징 선택 방법인 분산 분석 기반 방식과 상호의존정보 기반 방식을 활용해 특징을 선택한다. 시뮬레이션 결과 입력 데이터의 특징을 그대로 이용하는 것보다 상호의존정보 기반 특징 선택을 이용하면 적은 입력 특징을 이용해 서포트 벡터 머신 기반 분류기로부터 더 높은 분류 성능을 얻어 낼 수 있다.

콘서트홀 무대반사판의 설계에 관한 연구 (A study on the design of ensemble reflector in a concert hall)

  • 김민애;오양기
    • 한국음향학회지
    • /
    • 제37권5호
    • /
    • pp.356-362
    • /
    • 2018
  • 장방형 평면의 한쪽 끝에 자리잡아 벽체와 천장 등의 1차 혹은 2차반사음을 많이 확보할 수 있는 슈박스 콘서트홀의 무대와는 달리, 객석으로 둘러싸인 무대의 빈야드 콘서트홀은 무대 위의 연주자들이 자신이나 다른 연주자들의 연주음 크기나 화음을 모니터링 할 수 있는 초기반사음이 절대 부족하다. 무대 주변벽에서의 반사음을 기대할 수 있지만 무대라이저와 그 위의 연주자들에 의해 상당부분 가려지기 때문에 그 효과는 극히 제한적이다. 무대반사판(ensemble reflector)은 무대의 상부에 설치하여 연주자들의 모니터링을 가능하게 함으로써 연주음의 앙상블을 향상시키는 데 기여할 수 있는 효과적인 수단이다. 2,000여석 규모의 커다란, 따라서 높은 천장으로 인해 유효한 초기 천장반사음을 확보하기 힘든 대형 빈야드 콘서트홀에서 적절한 위치와 형태와 면적을 갖는 효율적인 무대반사판을 설계하고 무대서포트에 관한 정량적 지표를 토대로 그 효과를 검증하였다.

실시간 총유사량 모니터링을 위한 H-ADCP 연계 수정 아인슈타인 방법의 의사 SVR 모형 (A SVR Based-Pseudo Modified Einstein Procedure Incorporating H-ADCP Model for Real-Time Total Sediment Discharge Monitoring)

  • 노효섭;손근수;김동수;박용성
    • 대한토목학회논문집
    • /
    • 제43권3호
    • /
    • pp.321-335
    • /
    • 2023
  • 자연하천에서의 유사량 계측은 하천공학적으로 중요한 의미를 가지지만 계측 방법의 비용 문제로 유사량 실측에 어려움이 따른다. 특히 소류사량 계측의 어려움으로 인해 주기적인 유사량 모니터링의 대부분이 부유사 농도 계측에만 제한되어 있는 실정이다. 본 연구에는 자동유량관측소에 설치된 횡방향 도플러 유속계(H-ADCP)의 후방산란값과 부유사 농도의 상관관계를 이용해 실시간으로 부유사 농도를 산정하고 총유사량을 산정하는 서포트벡터회귀 모형을 제안한다. 제안하는 실시간 총유사량 모니터링 시스템은 부유사 농도 모형과 수정 아인슈타인 방법을 모사하는 총유사량 산정 모형으로 구성된다. 각 모형의 매개변수와 입력변수는 K겹 교차검증 기반 격자검색 방법과 재귀적 특징 제거법을 이용해 결정되었다. 교차검증에서 부유사 농도 모형과 총유사량 산정 모형의 R2가 각각 0.885와 0.860으로 유사량-유량 관계곡선에 비해 정확한 것으로 나타났다. 시계열 유사량 관측을 통해 새로 제시되는 실시간 총유사량 관측 시스템이 자연하천에서 발달하는 유사량-유량 이력관계와 미세한 유량 변화에서 나타나는 유사량 변화를 성공적으로 관측할 수 있음을 확인했다. 본 연구에서 제안하는 방법은 마찰경사나 부유사 입도 등의 수리 조건을 가정할 필요 없이 H-ADCP의 원시자료만으로 부유사 농도와 총유사량을 산정할 수 있어 기존 방법에 비해 불확도가 적으며 경제적이다. 본 방법은 H-ADCP가 설치된 유사량 관측소에 광범위하게 적용 가능해 유사량 모니터링의 시간적 해상도를 경제적으로 크게 줄일 수 있을 것으로 기대된다.

불균형적인 이항 자료 분석을 위한 샘플링 알고리즘들: 성능비교 및 주의점 (On sampling algorithms for imbalanced binary data: performance comparison and some caveats)

  • 김한용;이우주
    • 응용통계연구
    • /
    • 제30권5호
    • /
    • pp.681-690
    • /
    • 2017
  • 파산감지, 스팸메일 감지, 불량품 감지 등 일상생활에서 불균형적인 이항 분류 문제를 다양하게 접할 수 있다. 반응변수의 클래스의 비율이 상당히 불균형한 경우 이항 분류 모형의 예측 성능이 좋지 않다는 점은 이미 잘 알려진 사실이다. 이러한 문제점을 해결하기 위해 그 동안 오버 샘플링, 언더 샘플링, SMOTE와 같은 여러 샘플링 기법이 개발되어 왔다. 본 연구에서는 분류 모형으로 많이 사용되는 기계학습모형으로 로지스틱 회귀모형, Lasso, 랜덤포레스트, 부스팅, 서포트 벡터 머신을 위의 샘플링 기법들과 결합하여 사용했을 때의 예측 성능을 살펴보았다. 실질적인 예측 성능의 개선 여부를 확인하기 위해 네 개의 실제 자료를 분석하였다. 이와 더불어, 샘플링 방법이 사용될 때 주의해야 할 점에 대해서 강조하였다.

머신러닝을 이용한 3차원 도로객체의 분류 (Classification of 3D Road Objects Using Machine Learning)

  • 홍송표;김의명
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.535-544
    • /
    • 2018
  • 급변하는 주변상황이나 대형차량과 같은 큰 지형지물에 센서가 가려질 경우에는 센서만을 이용한 완전 자율주행에는 한계가 따른다. 이에 자율주행을 위해서 센서를 이용한 한계점을 극복할 수 있도록 정밀한 도로지도를 부가적으로 이용하는 방법이 사용되고 있다. 본 연구는 국토지리정보원에서 제공하는 지상 MMS(Mobile Mapping System)로 취득된 3차원 점군자료를 이용하여 도로 객체를 분류하는 연구를 수행하였다. 본 연구를 위해서 원본 3차원 점군자료를 전처리 하고, 지면과 비지면점을 분리하기 위한 필터링 기법을 선정하였다. 또한 차선, 가로등, 안전펜스 등에 해당하는 도로객체를 초기 분할한 후 분할된 객체를 머신러닝의 종류인 서포트 벡터 머신을 이용하여 학습시킨 후 분류하였다. 학습데이터는 분할된 도로객체에서 추출한 고유값을 이용한 기하학적 요소와 높이정보만을 사용하였으며 분류결과 전체정확도는 87%, 카파계수는 0.795로 나타났다. 향후 도로객체의 분류를 위하여 기하학적인 요소 뿐만 아니라 다양한 항목을 추가한다면 분류정확도가 높아질 것으로 예상된다.

하천에 유입된 유해화학물질의 역추적을 위한 기계학습 프레임워크 개발 (Development of machine learning framework to inverse-track a contaminant source of hazardous chemicals in rivers)

  • 권시윤;서일원
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2020
  • 하천에서 유해화학물질 유입 사고 발생 시 수환경 피해를 최소화하기 위해 신속한 초기 대응이 필요하다. 따라서, 본 연구에서는 수환경 화학사고 대응 시스템 구축을 위해 하천 실시간 모니터링 지점에서 관측된 유해화학물질의 농도 자료를 이용하여 발생원의 유입 지점과 유입량을 역추적하는 프레임워크를 개발하였다. 본 연구에서 제시하는 프레임워크는 첫 번째로 하천 저장대 모형(Transient Storage Zone Model; TSM)과 HEC-RAS 모형을 이용하여 다양한 유량의 수리 조건에서 화학사고 시나리오를 생성하는 단계, 두번째로 생성된 시나리오의 유입 지점과 유입량에 대한 시간-농도 곡선 (BreakThrough Curve; BTC)을 21개의 곡선특징 (BTC feature)으로 추출하는 단계, 최종적으로 재귀적 특징 선택법(Recursive Feature Elimination; RFE)을 이용하여 의사결정나무 모형, 랜덤포레스트 모형, Xgboost 모형, 선형 서포트 벡터 머신, 커널 서포트 벡터 머신 그리고 Ridge 모형에 대한 모형별 주요 특징을 학습하고 성능을 비교하여 각각 유입 위치와 유입 질량 예측에 대한 최적 모형 및 특징 조합을 제시하는 단계로 구축하였다. 또한, 현장 적용성 제고를 위해 시간-농도 곡선을 2가지 경우 (Whole BTC와 Fractured BTC)로 가정하여 기계학습 모형을 학습시켜 모의결과를 비교하였다. 제시된 프레임워크의 검증을 위해서 낙동강 지류인 감천에 적용하여 모형을 구축하고 시나리오 자료 기반 검증과 Rhodamine WT를 이용한 추적자 실험자료를 이용한 검증을 수행하였다. 기계학습 모형들의 비교 검증 결과, 각 모형은 가중항 기반과 불순도 감소량 기반 특징 중요도 산출 방식에 따라 주요 특징이 상이하게 산출되었으며, 전체 시간-농도 곡선 (WBTC)과 부분 시간-농도 곡선 (FBTC)별 최적 모형도 다르게 산출되었다. 유입 위치 정확도 및 유입 질량 예측에 대한 R2는 대부분의 모형이 90% 이상의 우수한 결과를 나타냈다.

  • PDF