• Title/Summary/Keyword: 서식지 분포 변화

Search Result 154, Processing Time 0.025 seconds

Predicting the Suitable Habitat of Amaranthus viridis Based on Climate Change Scenarios by MaxEnt (MaxEnt를 활용한 청비름(Amaranthus viridis)의 기후변화 시나리오에 의한 서식지 분포 변화 예측)

  • Lee, Yong Ho;Hong, Sun Hee;Na, Chae Sun;Sohn, Soo In;Kim, Myung Hyun;Kim, Chang Seok;Oh, Young-Ju
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.240-245
    • /
    • 2016
  • This study was conducted to predict the changes of potential distribution for invasive alien plant, Amaranthus viridis in Korea. The habitats of A. viridis were roadside, bare ground, farm area, and pasture, where the interference by human was severe. We used maximum entropy modeling (MaxEnt) for analyzing the environmental influences on A. viridis distribution and projecting on two different representative concentration pathways (RCP) scenarios, RCP 4.5 and RCP 8.5. The results of our study indicated annual mean temperature, elevation and precipitation of coldest month had higher contribution for A. viridis potential distribution. Projected potential distribution of A. viridis will be increased by 110% on RCP 4.5, 470% on RCP 8.5.

Distribution of the Kentish Plover (Charadrius Alexandrinus) Based on the 3rd National Ecosystem Survey and Its Adequacy as a Bioindicator (제 3차 전국자연환경조사를 이용한 흰물떼새(Charadrius alexandrinus)의 분포현황과 생물지표종의 제안)

  • Kim, Woo-Yuel;Bae, So-Yeon;Oh, Su-Jeung;Yoon, Hee-Nam;Lee, Jung-Hyo;Paek, Woon-Kee;Sung, Ha-Cheol
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • In this study we analyzed the spatial and temporal distribution and preferred habitat type of the Kentish plover (Charadrius alexandrinus) based on the 3rd National Ecosystem Survey. Kentish plovers were observed in 97 maps out of a total 842 maps (11.8%) between 2006 and 2012, mainly along the western and southern coasts of Korea. They were also observed in the eastern coast of Korea, inland rivers (Han, Geum, Nakdong, Seomjin, and Yongsan River), the western and eastern coast of Jeju island, and Daecheong Island in the Yellow Sea. The observations were mainly made during the spring breeding season and migration seasons in spring and autumn. The occurrence of kentish plovers was positively influenced by the area of water and wetland according to the middle classification level of land cover type analysis and the area of coastal wetlands in the detailed classification level of land cover types. Most (90%) of the kentish plovers recorded maps had coastal wetlands. Kentish plovers were known to be susceptible to change of habitat. As the occurrence of kentish plovers could be associated with the habitat-change of coastal wetlands and it is possible to estimate the number of individuals, it is recommended that kentish plovers be used as a bioindicator species for the ecological assessment of ecosystem in intertidal zones.

Predicting the suitable habitat of the Pinus pumila under climate change (기후변화에 의한 눈잣나무의 서식지 분포 예측)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.379-392
    • /
    • 2014
  • This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.

Predicting the Potential Habitat and Future Distribution of Brachydiplax chalybea flavovittata Ris, 1911 (Odonata: Libellulidae) (기후변화에 따른 남색이마잠자리 잠재적 서식지 및 미래 분포예측)

  • Soon Jik Kwon;Yung Chul Jun;Hyeok Yeong Kwon;In Chul Hwang;Chang Su Lee;Tae Geun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.335-344
    • /
    • 2023
  • Brachydiplax chalybea flavovittata, a climate-sensitive biological indicator species, was first observed and recorded at Jeju Island in Korea in 2010. Overwintering was recently confirmed in the Yeongsan River area. This study was aimed to predict the potential distribution patterns for the larvae of B. chalybea flavovittata and to understand its ecological characteristics as well as changes of population under global climate change circumstances. Data was collected both from the Global Biodiversity Information Facility (GBIF) and by field surveys from May 2019 to May 2023. We used for the distribution model among downloaded 19 variables from the WorldClim database. MaxEnt model was adopted for the prediction of potential and future distribution for B. chalybea flavovittata. Larval distribution ranged within a region delimited by northern latitude from Jeju-si, Jeju Special Self-Governing Province (33.318096°) to Yeoju-si, Gyeonggi-do (37.366734°) and eastern longitude from Jindo-gun, Jeollanam-do (126.054925°) to Yangsan-si, Gyeongsangnam-do (129.016472°). M type (permanent rivers, streams and creeks) wetlands were the most common habitat based on the Ramsar's wetland classification system, followed by Tp type (permanent freshwater marshes and pools) (45.8%) and F type (estuarine waters) (4.2%). MaxEnt model presented that potential distribution with high inhabiting probability included Ulsan and Daegu Metropolitan City in addition to the currently discovered habitats. Applying to the future scenarios by Intergovernmental Panel on Climate Change (IPCC), it was predicted that the possible distribution area would expand in the 2050s and 2090s, covering the southern and western coastal regions, the southern Daegu metropolitan area and the eastern coastal regions in the near future. This study suggests that B. chalybea flavovittata can be used as an effective indicator species for climate changes with a monitoring of their distribution ranges. Our findings will also help to provide basic information on the conservation and management of co-existing native species.

Comparison of Butterfly Communities between Guryongryeong and Gojigkyeong of the Baekdudaegan Mountain Range and the Changes in Their Distribution (백두대간 구룡령과 고직령의 나비군집 비교와 분포변화)

  • Kim, Do Sung;Oh, Ki Seok;Park, Seong Joon;Choi, Seung Se;Lee, Seung Hyuk
    • Korean journal of applied entomology
    • /
    • v.54 no.3
    • /
    • pp.233-245
    • /
    • 2015
  • The Baekdudaegan Mountain Range is home to a wide range of organisms inhabiting the Korean Peninsula. This study monitored butterfly communities of Guryongryeong (Myeonggye-ri) and Gojingkyeong (Seobyeok-ri) from April to September in 2013 to 2014, and the results were compared with previous data to determine changes in their distribution. We found 1,098 butterflies of 65 different species in Myeonggye-ri, and 1,161 butterflies of 63 different species in Seobyeok-ri. Comparing the two regions, 13 species appeared only in Seobyeok-ri and 15 species appeared only in Myeonggae-ri. When species were ranked according to number of individuals, the top species three species were as follows: Artogeia melete (127, 11.6%), A. napi (100, 9.1%), and Papilio maackii (90, 8.2%) in Myeonggye-ri; and Libythea celtis (146, 12.6%), A. napi (134, 11.5%), and Polygonia c-aureum (69, 5.9%) in Seobyeok-ri. The number of species with fewer than three individuals each was 24 in Myeonggye-ri and 23 in Seobyeok-ri, accounting for a high percentage among the total number of species. The similarities between the two regions were relatively high, and many of the butterflies are on the Red List of Korea. Compared with previous distribution data, there were no significant changes. This consistency indicates that the butterflies of the Baekdudaegan Mountain Range have been conserved well, and therefore the continuity in the Baekdudaegan Mountain Range is necessary to keep in the big picture.

Investigation of correlativity between Water Velocity and Water Temperature at a Natural River (자연하천에서의 유속과 수온의 상관성 조사)

  • Lee, Hyun-Seok;Lee, Geun-Sang;Kim, Young-Sung;Yang, Jae-Rheen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1879-1883
    • /
    • 2008
  • 본 연구는 자연하천에서의 수온과 유속의 정량적인 관계를 도출하고 이를 검증하기위한 지점별 열화상 촬영 및 분석을 실시하였다. 단계별 연구내용은 다음과 같다. 1)서식처별 수온 모니터링: 수온은 시간 변화에 연동하므로 관측기간 내내 장기간의 모니터링을 실시하였다. 2) 서식처별 유속 관측: 하천에서의 지점별 유속은 강우가 없고 지형변화가 발생하지 않으면 그 차이가 크지 않으므로, 날씨가 좋았던 현장조사 기간 중에는 시간을 고려하지 않은 각 지점별 유속을 취득하였다. 3) 자료 분석: 취득된 수온 자료와 유속 자료를 분석하여 수온과 유속간의 정량적인 상관관계를 규명하였다. 4)분포특성 비교: 대표지점에서의 수치계산 결과와 열화상을 이용하여, 유속과 수온의 면적 분포를 제시하였다. 본 연구에서 제안한 수법을 현업에서 활용하기 위해서는 온도 분포의 주기로 볼 수 있는 1년간의 시기별 조사 및 서식환경이 각각 다른 지점에서의 환경특성을 고려한 분석이 보완되어야만 한다. 하지만 그럼에도 불구하고 적외선 카메라로 촬영한 영상을 이용하여 자연하천에서의 서식지 구분 및 유속 분포를 추정한 본 연구는 향후 그 활용성이 매우 크다고 사료된다.

  • PDF

Analysis and estimation of species distribution of Mythimna seperata and Cnaphalocrocis medinalis with land-cover data under climate change scenario using MaxEnt (MaxEnt를 활용한 기후변화와 토지 피복 변화에 따른 멸강나방 및 혹명나방의 한국 내 분포 변화 분석과 예측)

  • Taechul Park;Hojung Jang;SoEun Eom;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.214-223
    • /
    • 2022
  • Among migratory insect pests, Mythimna seperata and Cnaphalocrocis medinalis are invasive pests introduced into South Korea through westerlies from southern China. M. seperata and C. medinalis are insect pests that use rice as a host. They injure rice leaves and inhibit rice growth. To understand the distribution of M. seperata and C. medinalis, it is important to understand environmental factors such as temperature and humidity of their habitat. This study predicted current and future habitat suitability models for understanding the distribution of M. seperata and C. medinalis. Occurrence data, SSPs (Shared Socio-economic Pathways) scenario, and RCP (Representative Concentration Pathway) were applied to MaxEnt (Maximum Entropy), a machine learning model among SDM (Species Distribution Model). As a result, M. seperata and C. medinalis are aggregated on the west and south coasts where they have a host after migration from China. As a result of MaxEnt analysis, the contribution was high in the order of Land-cover data and DEM (Digital Elevation Model). In bioclimatic variables, BIO_4 (Temperature seasonality) was high in M. seperata and BIO_2 (Mean Diurnal Range) was found in C. medinalis. The habitat suitability model predicted that M. seperata and C. medinalis could inhabit most rice paddies.

A Study for Continue and Decline of Abies koreana Forest using Species Distribution Model - Focused in Mt. Baekwun Gwangyang-si, Jeollanam-do - (종 분포 모형을 이용한 구상나무림의 지속 및 쇠퇴에 관한 연구 - 전라남도 광양시 백운산을 중심으로 -)

  • Cho, Seon-Hee;Park, Jong-young;Park, Jeong-Ho;Lee, Yang-Geun;Mun, Lee-man;Kang, Sang-Ho;Kim, Gwang-Hyun;Yun, Jong-Guk
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.3
    • /
    • pp.360-367
    • /
    • 2015
  • The present study investigated the habitats of Korean fir trees (Abies koreana E. H. Wilson) on Mt. Baekwun (Baekwun-san), determined the current distribution, quantified the contribution of biological and non-biological environmental factors affecting the distribution, derived actual and potential habitats, presented a plan for the establishment of protected areas, applied RCP 8.5 climate change scenario to analyze the effects of climate change on the future distribution of Korean fir trees, and predicted future potential habitats. According to the results of the study, 3,325 Korean fir trees (DBH >= 2.5 cm) inhabited Mt. Baekwun, and their distribution area was approximately 150 ha. Populations of Korean fir trees were confirmed to exist at an altitude of 900 m above sea level and were distributed up to 1,200 m. Based on potential distribution, areas appropriate for habitation by Korean fir trees were analyzed to be 450 ha, three times the current distribution area, with a focus on Sang Peak (Sang-bong), Eokbul Peak (Eokbul-bong), Ddari Peak (Ddari-bong), and Dosol Peak (Dosol-bong). The forest stands near Sang Peak, the main peak, were evaluated as those with the most appropriate potential for the habitation of Korean fir trees, and populations of the trees tended to prefer the northern slope rather than the southern slope. When climate change scenario RCP 8.5 was applied and future potential distribution was analyzed, the habitats were expected to decrease in area to 20 ha by 2050, with a focus on Sang Peak, and areas appropriate for habitation were predicted not to exist by 2080. Judging from such results, as global warming accelerates, the habitats of Korean fir trees are clearly expected to move from lowlands to highlands.

Ecology and Life History of Boieophthaimus pectinirostris in Korea (한국산 짱뚱어 Boleophthalmus pectinirostris의 생태와 생활사)

  • RYU Bong-Suk;KIM Ik-Soo;CHOI Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.3
    • /
    • pp.316-324
    • /
    • 1995
  • Ecology and life History of the mudskipper, Boieophthaimus pectinirostris were investigated based on the specimens collected from the Korean roasts from 1978 to 1994. The spawning of this species takes place during the period from June to August. Prolarva hatched from egg was 3.3mm in total length, and began to bottom life in TL 16.0mm of 40 days after hatching. The stomach contents were principally diatoms. In the foraging behavior, this species were conducted at the wet soft mud on the upper tidal zones. The burrowing observed in the intertidal mud flat was YL type. B. pectinirostris is restricted to western and southwestern coast of Korea, but their habitats and individuals are being reduced by the result of reclimation to tide land.

  • PDF

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach (Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측)

  • Kim, Tae-Geun;Yang, DooHa;Cho, YoungHo;Song, Kyo-Hong;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.