• 제목/요약/키워드: 서비스러닝

검색결과 690건 처리시간 0.023초

이미지 캡션 및 재귀호출을 통한 스토리 생성 방법 (Automated Story Generation with Image Captions and Recursiva Calls)

  • 전이슬;조동하;문미경
    • 융합신호처리학회논문지
    • /
    • 제24권1호
    • /
    • pp.42-50
    • /
    • 2023
  • 기술의 발전은 제작 기법, 편집 기술 등 미디어 산업 전반에 걸쳐 디지털 혁신을 이루어 왔고, OTT 서비스와 스트리밍 시대를 관통하며 소비자 관람 형태의 다양성을 가져왔다. 빅데이터와 딥러닝 네트워크의 융합으로 뉴스 기사, 소설, 대본 등 형식을 갖춘 글을 자동으로 생성하였으나 작가의 의도를 반영하고 문맥적으로 매끄러운 스토리를 생성한 연구는 부족하였다. 본 논문에서는 이미지 캡션 생성 기술로 스토리보드 속 사진의 흐름을 파악하고, 언어모델을 통해 이야기 흐름이 자연스러운 스토리를 자동 생성하는 것을 기술한다. 합성곱 신경망(CNN)과 주의 집중기법(Attention)을 활용한 이미지 캡션 생성 기술을 통해 스토리보드의 사진을 묘사하는 문장을 생성하고, 첫 번째 이미지 캡션을 KoGPT-2에 입력하여 생성된 새로운 글과 두 번째 이미지의 캡션을 다음 입력값으로 활용한 재귀적 접근 방안을 제안하여 전후 문맥이 자연스럽고 기획 의도에 맞는 스토리를 생성하는 연구를 진행한다. 본 논문으로 인공지능을 통해 작가의 의도를 반영한 스토리를 자동으로 대량 생성하여 콘텐츠 창작의 고통을 경감시키고, 인공지능이 디지털 콘텐츠 제작의 전반적인 과정에 참여하여 미디어 지능화를 활성화한다.

레스토랑 카테고리와 온라인 소비자 리뷰를 이용한 딥러닝 기반 레스토랑 추천 시스템 개발 (Developing a Deep Learning-based Restaurant Recommender System Using Restaurant Categories and Online Consumer Review)

  • 구하은;이청용;김재경
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.27-46
    • /
    • 2023
  • 최근에는 외식 산업의 발달과 레스토랑 수요의 증가로 인해 레스토랑 추천 시스템 연구가 활발하게 제안되고 있다. 기존 레스토랑 추천 시스템 연구는 정량적인 평점 정보 또는 온라인 리뷰의 감성분석을 통해 소비자의 선호도 정보를 추출하였는데 이는 소비자의 의미론적 선호도 정보는 반영하지 못한다는 한계가 존재한다. 또한, 레스토랑이 포함하는 세부적인 속성을 반영한 추천 시스템 연구는 부족한 실정이다. 이를 해결하기 위해 본 연구에서는 소비자의 선호도와 레스토랑 속성 간의 상호작용을 효과적으로 학습할 수 있는 딥러닝 기반 모델을 제안하였다. 먼저, 합성곱 신경망을 온라인 리뷰에 적용하여 소비자의 의미론적 선호도 정보를 추출했고, 레스토랑 정보에 임베딩 기법을 적용하여 레스토랑의 세부적인 속성을 추출했다. 최종적으로 요소별 연산을 통해 소비자 선호도와 레스토랑 속성 간의 상호작용을 학습하여 소비자의 선호도 평점을 예측했다. 본 연구에서 제안한 모델의 추천 성능을 평가하기 위해 Yelp.com의 온라인 리뷰를 사용한 실험 결과, 기존 연구의 다양한 모델과 비교했을때 본 연구의 제안 모델이 우수한 추천 성능을 보이는 것을 확인하였다. 본 연구는 레스토랑 산업의 빅데이터를 활용한 맞춤형 레스토랑 추천 시스템을 제안함으로써 레스토랑 연구 분야와 온라인 서비스 제공자에게 학술적 및 실무적 측면에서 다양한 시사점을 제공할 수 있을 것으로 기대한다.

인코더와 디코더에 기반한 합성곱 신경망과 순환 신경망의 새로운 하이브리드 접근법 (New Hybrid Approach of CNN and RNN based on Encoder and Decoder)

  • 우종우;김건우;최근호
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.129-143
    • /
    • 2023
  • 빅데이터 시대를 맞이하여 인공지능 분야는 괄목할만한 성장을 보이고 있으며 특히 딥러닝에 의한 이미지 분류 학습방법이 중요한 영역으로 자리하고 있다. 이미지 분류에서 많이 사용되어 온 CNN의 성능을 더욱 개선하기 위해 다양한 연구가 활발하게 진행되었는데, 이 중에서 대표적인 방법이 CRNN(Convolutional Recurrent Neural Network) 알고리즘이다. CRNN 알고리즘은 이미지 분류를 위한 CNN과 시계열적 요소를 인식하기 위한 RNN의 조합으로 구성되는데, CRNN의 RNN영역에서 사용하는 입력값은 학습 대상의 이미지를 합성곱과 풀링 기법을 적용하여 추출된 결과물을 flatten한 값이고, 이 입력값들은 이미지 내 동일 위상에 있는 픽셀값들이 서로 다른 순서로 나타나기 때문에, RNN에서 의도한 이미지 내 배열 순서를 제대로 학습하기 어렵다는 한계점을 지닌다. 따라서 본 연구는 인코더와 디코더의 개념을 응용한 CNN과 RNN의 새로운 하이브리드 방법을 제안하여, 이미지 분류 성능을 향상시키는 것을 목적으로 하였다. 본 연구에서는 다양한 알고리즘 비교 실험을 통해, 새로운 하이브리드 방법의 효과성을 검증하였다. 본 연구는 인코더와 디코더 개념의 적용 가능성을 넓히고, 제안한 방법이 기존 하이브리드 방법에 비해, 복잡도가 크게 증가하지 않아 모델 학습 시간과 인프라 구축 비용 측면에서 이점을 있다는 점에서 학문적 시사점을 가진다. 또한, 정확한 이미지 분류가 필요한 다양한 분야에서 제공되는 서비스의 품질을 높일 수 있는 가능성을 제시하였다는 점에서 실무적 시사점을 가진다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

IoT 기반 스마트 냉장고 시스템 (A Smart Refrigerator System based on Internet of Things)

  • 김한진;이승기;김원태
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.156-161
    • /
    • 2018
  • 최근 인구가 급격히 증가하면서 음식물의 부족 및 낭비의 심각성이 대두되고 있다. 이를 해결하기 위해 다양한 국가 및 기업에서는 소비자의 식재료 구매 패턴 연구 및 IoT 기술이 적용된 스마트 냉장고 제품개발 등의 시도를 진행 중에 있다. 그러나, 현재 판매되고 있는 스마트 냉장고들은 기존에 비해 상당한 가격대를 형성하고 있으며, 복잡한 구성으로 인한 오작동 및 파손으로 또 다른 낭비를 초래한다. 본 논문에서는 음식물 부족 및 낭비 해결과 가정 내 원활한 식재료 관리를 위한 저비용의 IoT 기반 스마트 냉장고 시스템을 제안한다. 본 시스템은 QR코드, 이미지 인식, 음성 인식을 통해 식재료를 인식하여 등록하고 이를 바탕으로 다양한 서비스를 제공할 수 있다. 이미지 인식의 정확도를 높이기 위해 우리는 딥 러닝 알고리즘을 사용한 모델을 활용하였으며 정확한 식재료 등록이 가능함을 검증하였다.

발명하는 사람들-제53호

  • 한미영
    • 발명하는 사람들
    • /
    • 53호
    • /
    • pp.1-16
    • /
    • 2006
  • '여성기업지원에 관한 법률' 개정 한 목소리/발행인 칼럼/'제4회 여성발명경진대회' 수준 높아졌다/심사착수 예정시기 직접 통지 서비스 실시/특허청.한국기계연구원, 업무협약체결/낙도어린이들에게 꿈과 희망 심어주는 초청 행사 가져/특허청 팀장 선발 방식 변화 통한 팀제 강화/디자인 권리화 지원사업 실시한다/'DMB 특허품과 지재권전략 세미나'/'2006 독일 국제발명품 전시회' 회원 4명 수상/고성능 하이브리드 보호복, 출원 증가/'이달의 기능 한국인' 박순복 씨 선정/모방상표, 더 이상 등록 받을 수 없다/국내제약업계, 유사브랜드 너무많아/'2006 여성 재활용 발명경진대회' 개최/순수 한방재료로 만든 헤어 클리닉 화제/발명자에게 편리한 특허제도 마련/차로 마시는 '허브 추출물'로 살충제 만들어/종이컵에도 웰빙 바람이 불고 있다/특허공보 통해 '나의 발명' 확인가능/지역특산품도 지리적 표시로 보호 받는다/한미약품,'비만치료제 특허권 분재' 연승/국내특허, 해외에서 신속하게 심사 처리/'스판덱스 특허소송'에서 일본업체 패소/아모레, 다국적 화장품회사 로레알에 승소/제7차 한국.유럽 특허청장 회담 개최/고부가가치 창출하는 단백질 의약품 개발 필요/한방 진료에도 변화의 새바람 분다/에너지 절감'기능성 유리' 출원 급증/역사 속의 발명품/하루 10분 발명교실/특허Q&A/세상을 밝히는 여성들의 발명 아이디어/'특허넷' 정부기관 최초 CMMI 레벨4인증 획득/'해외지재권 보호 가이드북' 제작배포하다/아이디어 착상 및 발명 기법/고정관념을 깨트려 블루오션을 장악하라/에반스의 증기제분기/50년 후엔 동물과도 대화할 수 있다/첩보용 도구 전달 '발명팀' 실제 존재/중소기업 위한'2006 특허유통 페스티벌' 개최/출원료.심사청구료 반환제도 도입, 시행/'지재권 e-러닝 콘텐츠' 전 세계특허청 교육 자료로 활용/대한변리사회, 미 특허법 세미나 개최/한국여성발명협회 회원사 발명품 가이드

  • PDF

커팅 효과가 포함된 디지털 과학 교과서의 설계 및 구현 (Design and Implementation of Digital Science Textbook with Cutting Effects)

  • 양현록;강경규;한광파;김동호
    • 한국콘텐츠학회논문지
    • /
    • 제9권1호
    • /
    • pp.465-474
    • /
    • 2009
  • 디지털 시대의 개막과 함께 교육의 패러다임은 변화하고 있다. 이렇게 변화해 가는 패러다임은 더 많은 상호 작용이 존재하는 디지털 교과서 콘텐츠를 필요로 한다. 우리의 목표는 편리한 인터페이스를 갖추고, 커팅효과가 추가되어 기존에 비해 상호작용성이 높은 타블렛 PC 기반의 디지털 교과서를 제작하는 것이다. 이러한 목표를 달성하기 위해서 여러 차례 디지털 교과서를 개발해 온 전문가들과의 회의를 토대로 설계한 인터페이스 및 학습내용에 대해서 설명한다. 그리고 사용자가 임의로 입력한 스트로크에 기반하여 다층 구조의 3D 객체의 단면을 생성하기 위해서 구현된 커팅 알고리즘에 대해서 설명한다. 마지막으로 우리가 개발한 콘텐츠를 시범서비스 했을 때의 결과를 설문 조사 내용을 토대로 하여 상호작용성이 높은 디지털 교과서의 교육적 효과에 대해서 토론할 것이다.

블록 암호 AES에 대한 CNN 기반의 전력 분석 공격 (Power Analysis Attack of Block Cipher AES Based on Convolutional Neural Network)

  • 권홍필;하재철
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.14-21
    • /
    • 2020
  • 두 통신자간 정보를 전송함에 있어 기밀성 서비스를 제공하기 위해서는 하나의 대칭 비밀키를 이용하는 블록데이터 암호화를 수행한다. 데이터 암호 시스템에 대한 전력 분석 공격은 데이터 암호를 위한 디바이스가 구동할 때 발생하는 소비 전력을 측정하여 해당 디바이스에 내장된 비밀키를 찾아내는 부채널 공격 방법 중 하나이다. 본 논문에서는 딥 러닝 기법인 CNN (Convolutional Neural Network) 알고리즘에 기반한 전력 분석 공격을 시도하여 비밀 정보를 복구하는 방법을 제안하였다. 특히, CNN 알고리즘이 이미지 분석에 적합한 기법인 점을 고려하여 1차원의 전력 분석파형을 2차원 데이터로 이미지화하여 처리하는 RP(Recurrence Plots) 신호 처리 기법을 적용하였다. 제안한 CNN 공격 모델을 XMEGA128 실험 보드에 블록 암호인 AES-128 암호 알고리즘을 구현하여 공격을 수행한 결과, 측정한 전력소비 파형을 전처리 과정없이 그대로 학습시킨 결과는 약 22.23%의 정확도로 비밀키를 복구해 냈지만, 전력 파형에 RP기법을 적용했을 경우에는 약 97.93%의 정확도로 키를 찾아낼 수 있었음을 확인하였다.

이미지 인식 기술의 산업 적용 동향 연구 (A Study on the Industrial Application of Image Recognition Technology)

  • 송재민;이새봄;박아름
    • 한국콘텐츠학회논문지
    • /
    • 제20권7호
    • /
    • pp.86-96
    • /
    • 2020
  • 본 연구는 이미지 인식기술 서비스의 산업 적용 사례를 기반으로 인공지능이 이미지 인식기술에 어떠한 역할을 하고 있는지 살펴보았다. 이미지 인식 기술을 사용하여 위성사진을 인공지능으로 분석해 특정 국가의 원유 저장탱크의 산출 내역을 밝혀내거나, 사용자가 촬영하거나 다운로드한 이미지와 유사한 이미지나 제품을 검색해주기도 하며, 과일의 산출량을 정렬한다거나 식물의 질병을 탐지해 낼 수도 있다. 딥러닝과 신경망 알고리즘을 기반으로 사람의 나이, 성별, 기분까지도 인식할 수 있어 이미지 인식 기술이 다양한 산업에서 적용되고 있음을 확인하였다. 본 연구에서는 국내 및 해외의 이미지 인식 기술의 활용 사례를 살펴보는 것 뿐 아니라, 어떠한 형태로 산업에 적용되고 있는지 확인을 할 수 있다. 또한, 본 연구를 통하여 여러 산업에서 이미지 인식기술을 구현하고 적용하여 발전시킨 여러 성공 사례들을 중심으로 향후 연구의 방향성을 제시했으며, 향후 국내 이미지 인식 기술이 나아가야 할 방향을 고찰해 볼 수 있다.

서비스 맞춤형 컨테이너를 위한 블록 입출력 히스토리 학습 기반 컨테이너 레이어 파일 시스템 선정 기법 (A Method of Selecting Layered File System Based on Learning Block I/O History for Service-Customized Container)

  • 용찬호;나상호;이필우;허의남
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권10호
    • /
    • pp.415-420
    • /
    • 2017
  • OS-level의 가상화 기술은 애플리케이션을 배포하기 위한 새로운 패러다임으로, 기존의 가상화 기술인 가상 머신을 대체할 수 있는 기술로서 주목받고 있다. 특히 컨테이너는 기존의 리눅스 컨테이너에 유니온 마운트 포인트(Union Mount Point) 와 레이어 구조의 이미지를 적용함으로써 보다 빠르고 효율적인 애플리케이션의 배포가 가능하다. 이러한 컨테이너의 특징들은 스냅숏 기능을 제공하는 레이어 구조의 파일 시스템에서만 사용될 수 있으며, 애플리케이션의 특징에 따라 적절한 레이어 파일 시스템을 선택하는 것이 요구된다. 따라서 본 논문에서는 대표적인 레이어 파일 시스템들의 특징을 조사한 뒤, 레이어 파일 시스템의 동작 원리인 Allocate-on-Demand 및 Copy-up 방식에 따른 파일 시스템의 쓰기 성능 평가를 수행한다. 또한 각 레이어 파일 시스템 방식의 블록 입출력 사용 데이터를 학습한 인공 신경망을 통해 임의의 애플리케이션에 대해 적합한 레이어 파일 시스템 방식을 결정하는 방법을 제시하고 이에 대한 타당성을 검토한다.