• Title/Summary/Keyword: 서브 마이크론 입자

Search Result 28, Processing Time 0.027 seconds

Generation of Bi-modal Particles for Performance Evaluation of Air Cleaning Devices for Submicron Aerosols (나노/서브마이크론 에어로졸의 집진성능평가를 위한 이중모드 입자의 발생)

  • 지준호;황정호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.97-98
    • /
    • 2003
  • 나노/서브마이크론 크기의 입자는 최근 유해 입자상 물질 제거 및 오염 제어나 물질 제조 등의 분야에서 관심이 높아지고 있다. 보통 환경 입자상 물질로 불리는 0.1~l $\mu\textrm{m}$ 범위의 서브마이크론 입자는 자동차, 공장, 발전소, 소각로 등의 연소 과정에서 발생되어 상당량이 대기로 배출되는데, 인체에 유입되면 호흡기 장애나 암을 유발하는 등의 나쁜 영향을 미친다. 특히, 관성력과 확산력에 의한 영향이 적고 하전 입자의 전기적인 이동도도 낮기 때문에 집진장치나 공기청정장치에서 집진효율이 가장 낮은 크기 범위이다. (중략)

  • PDF

Fabrication of Cu Flakes by Ball Milling of Sub-micrometer Spherical Cu Particles (서브 마이크론급 구형 동분말의 볼 밀링을 통한 플레이크 동분말의 제조)

  • Kim, Ji Hwan;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.133-137
    • /
    • 2014
  • As a preceding process for preparing several micrometer sized Ag-coated Cu flakes, ball milling of submicrometer-sized Cu particles synthesized through a wet chemical method was performed in order to convert the particles into flakes. To suppress oxidation and aggregation of the particles during ball milling, ethylene glycol and ethyl acetate were used as a medium and a surface modifying agent, respectively. Results obtained with different rotation speeds of a jar indicated that the rotation speed changes a rotating mode, and strikingly alters the final shapes and shape uniformity of Cu particles after milling. The diameter of zirconia ball was also confirmed. Although there was aggregates in the initial submicrometer-sized Cu particles, therefore, well-dispersed Cu flakes with a size of several micrometers were successfully prepared by ball milling through optimization of rotation speed, amount of ethyl acetate, and diameter of zirconia ball.

Oral Bioavailability for Sub-micron Particle Curcumin (TheracurminCR-033P) and Absorption Rate by Product Composition in Healthy Human Volunteers (서브마이크론 입자 형태 커큐민의 생체 흡수율 및 제품 조성에 따른 흡수율 동등성 연구)

  • Park, Hee Jung;Takahashi, Tsukasa;Ozawa, Hitomi
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.273-279
    • /
    • 2017
  • Curcumin have various health-beneficial properties in numerous studies. However, its bioavailability is low due to its limited intestinal uptake and rapid metabolism. This study aimed to evaluate the pharmacokinetics of newly developed sub-micron particle curcumin with increased water dispersibility (Theracurmin(R) CR-033P). Plasma curcumin levels were measured at 0, 1, 2, 4, 8 h after Theracurmin(R) CR-033P intake using high-performance liquid chromatography. For analyzing pharmacokinetics of Theracurmin(R) CR-033P, eighteen healthy subjects were recruited and received Theracurmin(R) CR-033P at a single oral dose containing curcumin 30 mg. $C_{max}$ was 28.14 ng/ml, and the area under the curve for 8 h was estimated to be 104.36 ng/ml. Based on the area under the plasma concentration (AUC), the bioavailability of sub-micron particle curcumin was higher 22-, 35-, 28-fold than native curcumin in men, women, and all subjects, respectively. For comparing by formulation, seven healthy subjects were recruited and received two type of treatment: (1) existing dosage form 300 mg (contained curcumin 30 mg) ${\times}$ 3 capsule, (2) high dosage form 300 mg (contained curcumin 90 mg) ${\times}$ 1 capsule + placebo 300 mg ${\times}$ 2 capsule. In the cross-over study, there was no significant differences in $C_{max}$ and AUC of plasma curcumin. In conclusion, submicron particle curcumin with increased water dispersibility significantly improved its oral bioavailability and women absorbed curcumin more effectively than men. Different formulation of Theracurmin(R) CR-033P has shown equivalent to the reference in terms of pharmacokinetics.

The Unipolar Charging Characteristics of Submicron Particles by Using an Indirect Photoelectric Charging (간접 광대전에 의한 서브 마이크론 입자의 단극하전 특성)

  • Choi, Young-Joo;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.677-684
    • /
    • 2003
  • A new unipolar aerosol charger was developed by using an indirect photoelectric charging. The charger consists of two coaxial tubes, the inner UV lamp wrapped with stainless mesh and the outer Al cylinder. In this study, the effects of flow rate, particle size, and electric field were examined to search the optimal charging conditions with experimental and numerical methods. Monodisperse NaCl particles were fed into an annular space and the particles were charged by negative ions generated from Al plate exposed to the UV light. According to experimental results, the average number of elementary charge on particles increases from 2.5 to 5.5 as particle size increases from 50nm to 130nm at 2.5 L/min and 100V. The average number of elementary charge on particles was maximized at 25V as the electric potential between the stainless mesh and Al plate was varied from 0V to 400V.

Characterization of submicron Particles Using a Single Particle Mass Spectrometer(I) - Non - Linear Correlation Between Particle Size and Mass Spectra Signals - (단일입자 질량분석기를 애용한 서브마이크론 입자의 특성화(I) - 입자의 크기와 질량분광신호의 비선형성 -)

  • Zachariah Michael R.;Lee Donggeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.453-459
    • /
    • 2005
  • In this paper, we are proposing a robust tool which is capable of measuring the size and elemental composition of submicron particles from twenty to several hundreds nanometers at the same time, i.e., named Single Particle Mass Spectrometer (SPMS). The home-made SPMS employs a laser ablation/multi-photon ionization method to tear a nanoparticle into the constituent elemental ions. One thing different from the conventional Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is the power of the ionization laser. Much strong laser used in this work makes it possible to generate elemental ions rather than molecular ions from a nanoparticle. Also the use of high power laser may guarantee a complete ionization of a particle, which was confirmed by the existence of multiple charged ions. If a particle is evaporated/ionized completely and detected through electric field-free TOF tube without any loss, we can extract the original particle volume from the measured total ion numbers. Collecting a number of particles mass spectra, we get a database of size and elemental composition of nanoparticles, with which we may take a took into any kinds of chemical reaction occurring at nanoscale. Several issues related to size estimation by SPMS will be discussed.

Design and Performance Evaluation of a Low Pressure Impactor for Sampling Submicron Aerosols (서브마이크론 입자 측정용 저압 임팩터의 설계 및 성능평가)

  • Ji, Jun-Ho;Cho, Myung-Hoon;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.349-358
    • /
    • 2004
  • A low pressure impactor is an impaction device to separate airborne particles into aerodynamic size classes at low pressure condition. We designed a two-stage low-pressure impactor to classify submicron sized environmental aerosols. Performance evaluation was carried out for stages 1 and 2 by using an electrical method. Monodisperse liquid dioctyl sebacate (DOS) particles were generated using evaporation-condensation process followed by electrostatic classification using a DMA (differential mobility analyzer). The test particles were in the range of 0.08∼0.8$\mu\textrm{m}$. For the evaluation of the impactor we used two electrometers; one was connected to the impaction plate of the impactor and the other was to the Faraday cage used as a backup filter. The effect of polydispersity of test aerosols on the performance was investigated. The results showed that the experimental 50-% cutoff diameters at each impactor's operation pressure were 0.53 and 0.187$\mu\textrm{m}$ for stages 1 and stage 2, respectively. The effects of operation pressure on the cutoff diameter and the steepness of collection efficiency curves were also investigated.

Antioxidation Behavior of Submicron-sized Cu Particles with Ag Coating (서브 마이크론급 구리 입자의 은도금 공정에 따른 내산화성 강화 연구)

  • Choi, Eun Byeol;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.51-56
    • /
    • 2016
  • To fabricate a copper (Cu)-based fine conductive filler having antioxidation property, submicron silver (Ag)-coated Cu particles were fabricated and their antioxidation property was evaluated. After synthesizing the Cu particles of $0.705{\mu}m$ in average diameter by a wet-reduction process, Ag-coated Cu particles were fabricated by successive Ag plating using ethylene grycol solvent. Main process parameters in the Ag plating were the concentration of reductant (ascorbic acid), the injection rate of Ag precursor solution, and the stirring rate in mixed solution. Thus, Ag plating characteristics and the formation of separate fine pure Ag phase were observed with different combinations of process parameters. As a result, formation of the separate pure Ag phase and aggregation between Ag-coated Cu particles could be suppressed by optimization of the process parameters. The Ag-coated Cu particles which were fabricated using optimal conditions showed slight aggregation, but excellent antioxidation property. For example, the particles indicated the weight gain not exceeding 0.1% until $225^{\circ}C$ when they were heated in air at the rate of $10^{\circ}C/min$ and no weight gain until 75 min when they were heated in air at $150^{\circ}C$.

Optimization of a Crystallization Process by Response Surface Methodology (반응표면분석법을 이용한 결정화 공정의 최적화)

  • Lee, Se-Eun;Kim, Jae-Kyeong;Han, Sang-Keun;Chae, Joo-Seung;Lee, Keun-Duk;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.730-736
    • /
    • 2015
  • Cyclotrimethylene trinitramine (RDX) is a high explosive commonly used for military applications. Submicronization of RDX particles has been a critical issue in order to alleviate the unintended and accidental stimuli toward safer and more powerful performances. The purpose of this study is to optimize experimental variables for drowning-out crystallization applied to produce submicron RDX particles. Effects of RDX concentration, anti-solvent temperature and anti-solvent mass were analyzed by the central composite rotatable design. The adjusted determination coefficient of regression model was calculated to be 0.9984 having the p-value less than 0.01. Response surface plots based on the central composite rotatable design determined the optimum conditions such as RDX concentration of 3 wt%, anti-solvent temperature of $0.2^{\circ}C$ and anti-solvent mass of 266 g. The optimum and experimental diameters of RDX particles were measured to be $0.53{\mu}m$ and $0.53{\mu}m$, respectively. The regression model satisfactorily predicts the average diameter of RDX particles prepared by drowning-out crystallization. Structure of RDX crystals was found to be ${\alpha}$-form by X-ray diffraction analysis and FT-IR spectroscopy.

Nano and Submicron Sized Particle Collection with Various Voltage Waveforms for Dielectric Barrier Discharge Type 2-Stage ESP (유전체 베리어 방전형 2단 전기집진기의 인가전압 파형별 나노 및 서브마이크론 입자 집진 특성)

  • Park, Jae-Hong;Byeon, Jeong-Hoon;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1261-1266
    • /
    • 2004
  • Dielectric Barrier Discharge (DBD) in air, which has been established for the production of large quantities of ozone, is more recently being applied to a wider range of aftertreatment processes for HAPs (Hazardous Air Pollutants). Although DBD has high electron density and energy, its potential use as precharging nano and submicron particles are not well known. In this work, we measured I-V characteristics of DBD and estimated collection efficiency of the particles by DBD type 2-stage ESP. To examine the particle collection with various applied voltage waveforms of DBD for nano and submicron sized, bimodal particles were generated by a electrical tube furnace and an atomizer.

  • PDF