• Title/Summary/Keyword: 서브픽셀

Search Result 41, Processing Time 0.023 seconds

Bandwidth Efficient Summed Area Table Generation for CUDA (CUDA를 이용한 효율적인 합산 영역 테이블의 생성 방법)

  • Ha, Sang-Won;Choi, Moon-Hee;Jun, Tae-Joon;Kim, Jin-Woo;Byun, Hye-Ran;Han, Tack-Don
    • Journal of Korea Game Society
    • /
    • v.12 no.5
    • /
    • pp.67-78
    • /
    • 2012
  • Summed area table allows filtering of arbitrary-width box regions for every pixel in constant time per pixel. This characteristic makes it beneficial in image processing applications where the sum or average of the surrounding pixel intensity is required. Although calculating the summed area table of an image data is primarily a memory bound job consisting of row or column-wise summation, previous works had to endure excessive access to the high latency global memory in order to exploit data parallelism. In this paper, we propose an efficient algorithm for generating the summed area table in the GPGPU environment where the input is decomposed into square sub-images with intermediate data that are propagated between them. By doing so, the global memory access is almost halved compared to the previous methods making an efficient use of the available memory bandwidth. The results show a substantial increase in performance.

System Design and Camera Calibration of Slit Beam Projection for Maximum Measuring Accuracy (슬릿광 3차원 형상측정에서 측정분해능 최적화를 위한 시스템설계 및 카메라보정)

  • 박현구;김명철;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1182-1191
    • /
    • 1994
  • This paper presents an enhanced method of slit beam projection intended for the rapid measurement of 3-dimensional surface profiles of dies and molds. Special emphasis is given to optimizing the design of optical system so that the measuring accuracy can be maximized by adopting two-plane camera calibration together with sub-pixel image processing techniques. Finally, several measurement examples are discussed to demonstrate that an actual measuring accuracy of $\pm$ 0.2 mm can be achieved over the measuring range of 500 mm{\times}300mm{\times}200mm$.

The Implementation of Watermark Insertion System Using DWT and Data Matrix (DWT와 테이터 매트릭스를 이용한 워터마크 삽입을 위한 시스템 구현)

  • Park, Jong-Sam;Nam, Boo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.365-366
    • /
    • 2007
  • 본 워터마크를 삽입 할 수 있는 임베디드 시스템을 구현 하였다. 워터마크 삽입을 위해 DWT와 Data Matrix가 사용되었다. DWT(Discrete Wavelet Transform)는 주파수 공간에서 워터마크를 삽입하기 위해 사용되었고, Data Matrix는 워터마크로 사용되었다. 데이터 매트릭스는 미국의 Data Matrix사가 만든 이차원 바코드로 오류검출 및 복원 알고리즘을 가지고 있어 작은 에러는 복원이 가능하다. 시스템으로는 PDA를 사용하였고, 틀로는 EVC를 사용하였다. 삽입 알고리즘은 다음과 같다. DWT를 한 경우 4개의 서브밴드로 나누어지며, 그 중 cV(horizontal detail)와 cH(vertical detail)를 선택하여 4*4블록 단위로 나눈다. 나누어진 블록과 대응하는 워터마크의 픽셀 값에 의해 계수에 일정 값(가중치)을 더하거나 때주어 워터마크를 삽입한다. 추출 알고리즘은 역으로 이루어진다. 성능평가는 PDA에서 워터마크 삽입 알고리즘을 통하여 워터마크를 삽입, 추출된 영상을 가지고 Matlap을 이용하여 평가하였다.

  • PDF

Interlaced Scanning Volume Raycasting (비월주사식 볼륨 광선 투사법)

  • Choi, Ei-Kyu;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.9 no.4
    • /
    • pp.89-96
    • /
    • 2009
  • In general, the size of volume data is large since it has logical 3D structure so it takes long time to manipulate. Much work has been done to improve processing speed of volume data. In this paper, we propose a interlaced scanning volume rendering that reduce computation time by using temporal coherence with minimum loss of image quality. It renders a current frame by reusing information of previous frame. Conventional volume raycasting renders each frame by casting rays on every pixels. On the other hand, our methods divided an image into n-pixel blocks, then it casts a ray on a pixel of a block per each frames. Consequently, it generates an image by accumulating pixel values of previous n frames. The quality of rendered image of our method is better than that of simple screen space subsampling method since it uses afterimage effect of human cognitive system, and it is n-times faster that the previous one.

  • PDF

The High-Speed Extraction of Interest Region in the Parcel Image of Large Size (대용량 소포영상에서 관심영역 고속추출 방법에 관한 연구)

  • Park, Moon-Sung;Bak, Sang-Eun;Kim, In-Soo;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.11D no.3
    • /
    • pp.691-702
    • /
    • 2004
  • In this paper, we propose a sequence of method which extrats ROIs(Region of Interests) rapidly from the parcel image of large size. In the proposed method, original image is spilt into the small masks, and the meaningful masks, the ROIs, are extracted by two criterions sequentially The first criterion is difference of pixel value between Inner points, and the second is deviation of it. After processing, some informational ROIs-the areas of bar code, characters, label and the outline of object-are acquired. Using diagonal axis of each ROI and the feature of various 2D bar code, the area of 2D bar code can be extracted from the ROIs. From an experiment using above methods, various ROIs are extracted less than 200msec from large-size parcel image, and 2D bar code region is selected by the accuracy of 100%.

Measure Radiation and Correct Radiation in IR camera Image (적외선 카메라를 이용한 복사량 계측 및 교정 연구)

  • Jeong, Jun-Ho;Kim, Jae-Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.57-67
    • /
    • 2015
  • The concept of detection and classification of objects based on infrared camera is widely applied to military applications. While the object detection technology using infrared images has long been researched and the latest one can detect the object in sub-pixel, the object classification technology still needs more research. In this paper, we present object classification method based on measured radiant intensity of objects such as target, artillery, and missile using infrared camera. The suggested classification method was verified by radiant intensity measuring experiment using black body. Also, possible measuring errors were compensated by modelling-based correction for accurate radiant intensity measure. After measuring radiation of object, the model of radiant intensity is standardized based on theoretical background. Based on this research, the standardized model can be applied to the object classification by comparing with the actual measured radiant intensity of target, artillery, and missile.

Detection of Zebra-crossing Areas Based on Deep Learning with Combination of SegNet and ResNet (SegNet과 ResNet을 조합한 딥러닝에 기반한 횡단보도 영역 검출)

  • Liang, Han;Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • This paper presents a method to detect zebra-crossing using deep learning which combines SegNet and ResNet. For the blind, a safe crossing system is important to know exactly where the zebra-crossings are. Zebra-crossing detection by deep learning can be a good solution to this problem and robotic vision-based assistive technologies sprung up over the past few years, which focused on specific scene objects using monocular detectors. These traditional methods have achieved significant results with relatively long processing times, and enhanced the zebra-crossing perception to a large extent. However, running all detectors jointly incurs a long latency and becomes computationally prohibitive on wearable embedded systems. In this paper, we propose a model for fast and stable segmentation of zebra-crossing from captured images. The model is improved based on a combination of SegNet and ResNet and consists of three steps. First, the input image is subsampled to extract image features and the convolutional neural network of ResNet is modified to make it the new encoder. Second, through the SegNet original up-sampling network, the abstract features are restored to the original image size. Finally, the method classifies all pixels and calculates the accuracy of each pixel. The experimental results prove the efficiency of the modified semantic segmentation algorithm with a relatively high computing speed.

An Efficient Vehicle Image Compensation Algorithm based on Histogram Equalization (히스토그램 균등화 기반의 효율적인 차량용 영상 보정 알고리즘)

  • Hong, Sung-Il;Lin, Chi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2192-2200
    • /
    • 2015
  • In this paper, we propose an efficient vehicle image compensation algorithm based on Histogram Equalization. The proposed a vehicle image compensation algorithm was elimination to the vehicle image shake using motion compensation and motion estimation. And, algorithm was calculated the histogram of pixel values from each sub-image by dividing the image as the constant size areas in order to image enhancement. Also, it had enhancement to the image by adjusting the gradient. The proposed algorithm was evaluate the difference between of performance and time, image by applied to the IP, and were confirmed the image enhancement with removing of vehicle camera image shake. In this paper, the proposed vehicle image enhancement algorithm was demonstrated effectiveness when compared to existing vehicle image stabilization, because the elimination of shake for the vehicle images used real-time processing without using a memory. And it was obtained the reduction effect of the computation time by the calculated through block matching, and obtained the better restoration result for naturalness of the image with the lowest noise.

Fast Intermode Decision of Scalable Video Coding using Statistical Hypothesis Testing (스케일러블 비디오 부호화에서 통계적 가설 검증 기법을 이용한 프레임 간 모드 결정)

  • Lee, Bum-Shik;Kim, Mun-Churl;Hahm, Sang-Jin;Lee, Keun-Sik;Park, Keun-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.111-115
    • /
    • 2006
  • 스케일러블 비디오 코딩(SVC, Scalable Video Coding)은 MPEG(Moving Picture Expert Group)과 VCEG (Video Coding Expert Group)의 JVT(Joint VIdeo Team)에 의해 현재 표준화 되고 있는 새로운 압축 표준 기술이며 시간, 공간 및 화질의 스케일러빌리티를 지원하기 위해 계층 구조를 가지고 있다. 특히 시간적 스케일러빌리티를 위해 계층적 B-픽처 구조를 채택하고 있다. 스케일러블 비디오 코딩의 기본 계층은 H.264|AVC와 호환적이므로, 모션 예측과 모드 결정과정에서 $16{\times}16,\;16{\times}8,\;8{\times}16,\;8{\times}8,\;8{\times}4,\;4{\times}8$ 그리고 $4{\times}4$와 같은 7개의 서로 다른 크기를 갖는 블록을 사용한다. 스케일러블 비디오 코딩에서 사용되고있는 계층적 B-픽처 구조는 키 픽처인 I와 P 픽처를 제외하고는 한 GOP (Group of Picture)내에서 모두 B-픽처를 사용하므로 H.264|AVC와 비교했을 때 연산량 증가와 함께 부호화 지연도 급격히 증가한다. B-픽처는 양방향 모션 벡터인 LIST0와 LIST1을 사용하고 양방향 모두에서 다중 참조 픽처를 사용하기 때문이다. 본 논문에서는 통계적 가선 검증을 이용하여 스케일러블 비디오 부호화에 적용 가능한 고속 프레임간 모드 결정 알고리듬 대해 소개한다. 제안된 방법은 $16{\times}16$ 매크로 블록과 $8{\times}8$ 서브 매크로 블록에 통계적 가설 감증 기법을 적용하여 실행되며, 현재 블록과 복원된 참조 블록간의 픽셀 값을 비교하여 RD(Rate Distortion) 최적화 기반 모드 결정을 빨리 완료함으로써 고속 프레임간 모드 결정을 가능하게 한다. 제안된 방법은 프레임 간 모드 결정을 고속화함으로써 스케일러블 비디오 부호화기의 연산량과 복잡도를 최대 57%감소시킨다. 그러나 연산량 감소에 따른 비트율의 증가나 화질의 열화는 최대 1.74% 비트율 증가 및 0.08dB PSNR 감소로 무시할 정도로 작다.

  • PDF

A Study on Face Awareness with Free size using Multi-layer Neural Network (다층신경망을 이용한 임의의 크기를 가진 얼굴인식에 관한 연구)

  • Song, Hong-Bok;Seol, Ji-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.149-162
    • /
    • 2005
  • This paper suggest a way to detect a specific wanted figure in public places such as subway stations and banks by comparing color face images extracted from the real time CCTV with the face images of designated specific figures. Assuming that the characteristic of the surveillance camera allows the face information in screens to change arbitrarily and to contain information on numerous faces, the accurate detection of the face area was focused. To solve this problem, the normalization work using subsampling with $20{\times}20$ pixels on arbitrary face images, which is based on the Perceptron Neural Network model suggested by R. Rosenblatt, created the effect of recogning the whole face. The optimal linear filter and the histogram shaper technique were employed to minimize the outside interference such as lightings and light. The addition operation of the egg-shaped masks was added to the pre-treatment process to minimize unnecessary work. The images finished with the pre-treatment process were divided into three reception fields and the information on the specific location of eyes, nose, and mouths was determined through the neural network. Furthermore, the precision of results was improved by constructing the three single-set network system with different initial values in a row.