• Title/Summary/Keyword: 서보 드라이브

Search Result 87, Processing Time 0.024 seconds

A Study on the Frequency Response Signals of a Servo Valve (서보밸브의 주파수 응답 신호에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The flow signal or spool position signal is used to determine the dynamic characteristics of directional control valves. Alternatively, the signal of spool position or flow can be replaced with the velocity of a low friction, low inertia actuator. In this study, the frequency response of the servo valve equipped with a spool position transducer is measured with a metering cylinder. The input signal, spool displacement, load pressure, and velocity of the metering cylinder are measured, and the theoretical results from the transfer function analysis are verified. The superposition rule for magnitude ratio and phase angle was found to be always applicable among any signal type, and it was found that the load pressure signal is not appropriate for use as the signal for measuring the frequency response of a servo valve. It was confirmed that the frequency response of a servo valve using metering cylinder was similar to the results from a spool displacement signal. The metering cylinder used for measuring the frequency response of a servo valve should be designed to have sufficiently greater bandwidth frequency than the bandwidth frequency of the servo valve.

A Study on the Oil Inertia Effect and Frequency Response Characteristics of a Servo Valve-Metering Cylinder System (서보밸브-미터링 실린더 시스템의 오일 관성효과와 주파수 응답 특성에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.9-19
    • /
    • 2021
  • The spool displacement signal of a directional control valve, including the servo valve, can be considered as the standard signal to measure dynamic characteristics. When the spool displacement signal is not available, the velocity signal of a metering cylinder piston can be used. In this study, the frequency response characteristics of the metering cylinder are investigated for the spool displacement input. The transfer functions of the servo valve-metering system are derived taking into consideration the oil inertia effect in the transmission lines. The theoretical results of the transfer functions are verified through computer simulations and experiments. The oil inertia effect in the transmission lines was found to have a very significant effect on the bandwidth frequency of the servo valve-metering cylinder system. In order to more precisely measure the dynamic characteristics of a servo valve, the metering cylinder should be set up to minimize the oil inertia effect by increasing the inner diameters of the transmission lines or shortening their lengths.

Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller (적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어)

  • Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.

Fabrication of Electrostatic Track-Following Microactuator for Hard Disk Drive Using SOI (SOI를 이용한 하드 디스크 드라이브용 정전형 트랙 추적 마이크로 액추에이터의 제작)

  • Kim, Bong-Hwan;Chun, Kuk-Jin;Seong, Woo-Kyeong;Lee, Hyo-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.1-8
    • /
    • 2000
  • We have achieved a high aspect ratio track-following microactuator (TFMA) which is capable of driving 0.3 ${\mu}m$ magnetic head for hard disk drive (HDD). it was fabricated on silicon on insulator (SOI) wafer with 20 ${\mu}m$ trick active silicon and 2 ${\mu}m$ thick thermally grown oxide and piggyback electrostatic principle was used for driving TFMA. The first vibration mode frequency of TFMA was 18.5 kHz which is enough for a recording density of higher than 10 Gb/in$^2$. Its displacement was 1.4 ${\mu}m$ when 15 V dc bias plus 15 V ac sinusoidal driving input was applied and its electrostatic force was 50 N. The fabricated actuator shows 7.51 dB of gain margin and 50.98$^{\circ}$ of phase margin for 2.21 kHz servo-bandwidth.

  • PDF

Modeling and PID Control of an Electro-Hydraulic Servo System (전기유압 서보시스템의 모델링과 PID 제어)

  • Lee, Se Jin;Kim, Cheol Jae;Kang, Yong Ju;Choi, Soon Woo;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2019
  • The electro-hydraulic training device (TP511) provided by Festo Didactic are widely used, but teaching materials do not include mathematical modeling. Thus, there is a limit for full-scale learning about the electro-hydraulic servo system by using this equipment. In this study, for the purpose of improving students' understanding of the classical control and modern control Festo's electro-hydraulic servo training device (TP511) was mathematically modeled and parameter values were calculated by examining the characteristics of each component. And P, PI, PD, and PID controllers highly used in the industrial field, were designed by using the root locus method to achieve the optimal gains and used for simulation and experiments using the Festo's electro-hydraulic servo training apparatus. The validity of the derived mathematical model and the calculated parameter values were verified through simulation and experiment. It was found that the p control can achieve the control target more effectively than the pid control for Festo's electro-hydraulic servo training system by using the root locus method.

An Optical Disk Drive Servo System Using a Modified Disturbance Observer (수정된 외란관측기를 이용한 광 디스크 드라이브 서보 시스템)

  • Jeong Jong-Il;Kim Moo-Sub;Oh Kyung-Whan;Chung Chung Choo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.484-491
    • /
    • 2005
  • Using a disturbance observer is effective in enhancing the performance of dynamic system in presence of disturbances. Although various types of disturbance observers have been proposed to improve sensitivity of systems, there exist poor transient responses due to cross-couplings among disturbance observer loops. In this paper, dual disturbance observer (DOB) is proposed to reduce the effects of the cross-couplings. A different type of loop transfer function is proposed for external disturbance observer. While improving the sensitivity function by adding external DOB, it also provides improved complementary sensitivity function. The proposed dual DOB is applied to a commercial optical disk drive tracking system. It is shown that the dual DOB is an effective method in rejecting the effect of disturbance as well as improving the tracking performance.

Design of Disturbance Observer Considering Robustness and Control Performance (2) : It's Application for Optical Disc Drive Servo System (강인성과 제어 성능을 고려한 외란 관측기의 설계 (2) : 광 디스크 드라이브 서보 시스템에의 적용 실험)

  • 김홍록;최영진;서일홍;정완균;박명관;이경호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.270-276
    • /
    • 2003
  • The disturbance observer (DOB) has been widely utilized fer high precision and high speed motion control application. However, it still lacks the analysis for the robustness brought by using DOB. This paper summarizes six guidelines for the design of DOB taking into account the robustness and control performance in case of the second order system. For effectiveness of the proposed guideline, the actual implementation and experimental results of the DOB is compared in the Optical Disk Drive(ODD) servo system. In the DVD player and DVD-ROM drive, the guidelines of DOB are useful, and the disturbance rejection performance is improved under the DOB system.

A New Correction Algorithm of Servo Track Writing Error in High-Density Disk Drives (고밀도 디스크 드라이브의 서보트랙 기록오차 보정 알고리즘)

  • 강창익;김창환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.284-295
    • /
    • 2003
  • The servo tracks of disk drives are constructed at the time of manufacture with the equipment of servo track writer. Because of the imperfection of servo track writer, disk vibrations and head fluctuations during servo track writing process, the constructed servo tracks might deviate from perfect circles and take eccentric shapes. The servo track writing error should be corrected because it might cause interference with adjacent tracks and irrecoverable operation error of disk drives. The servo track writing error is repeated every disk rotation and so is periodic time function. In this paper, we propose a new correction algorithm of servo track writing error based on iterative teaming approach. Our correction algorithm can learn iteratively the servo track writing error as accurately as is desired. Furthermore, our algorithm is robust to system model errors, is computationally simple, and has fast convergence rate. In order to demonstrate the generality and practical use of our work, we present the convergence analysis of our correction algorithm and some simulation results.

Repetitive Control for the Track-Following Servo System of an Optical Disk Drive (광 디스크 드라이브의 트랙 추종 서보 시스템을 위한 반복 제어)

  • 문정호;이문노;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Disturbances acting on the track-following servo system of an optical disk drive inherently contain significant periodic components that cause tracking errors of a periodic nature. Such disturbances can be effectively rejected by employing a repetitive controller, which must be implemented carefully in consideration of system stability. Plant uncertainty makes it difficult to design a repetitive controller that will improve tracking performance yet preserve system stability. In this paper, we examine the problem of designing a repetitive controller for an optical disk drive track-following servo system with uncertain plant coefficients. We propose a graphical design technique based on the frequency domain analysis of linear interval systems. This design method results in a repetitive controller that will maintain system stability against all admissible plant uncertainties. We show simulation and experimental results to verify the validity of the proposed design method.

  • PDF

Performance Enhancement of Optical Disk Drive Servo System using Dual modified Disturbance Observer (광디스크 드라이브 서보 시스템을 위한 수정된 외란관측기)

  • Kim, Moo-Sub;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.738-740
    • /
    • 2004
  • The disturbance observer is effective in enhancing the performance of position control in high speed optical disk drive systems(ODDS). It is known that error based modified disturbance observer (EM-DOB) is more effective structure than general DOB. It has a simple structure and realization, but it loses robustness. We propose a dual modified disturbance observer(Dual mDOB). It consists of internal loop EM-DOB and external loop DOB. Those loops are designed for different objects. We see that the dual mDOB is an effective method for tracking performance.

  • PDF