• Title/Summary/Keyword: 서보전동기

Search Result 191, Processing Time 0.022 seconds

Permanent Magnet Synchronous Motor Dirve based on Maximum Torque Sensitivity (영구자석 동기전동기의 최대 토오크 감도운전)

  • 윤병도;김기용;이병송
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.5 no.1
    • /
    • pp.46-56
    • /
    • 1991
  • In this paper, the variable speed control of permanent magnet synchronous motor driven by a sinus¬oidal PWM inverter based on maximum torque sensitivity is presented. The developed torque or speed control is achieved by the field orientation technique. For the field orientation, the resolver is used as the rotor positioning sensor mounted on the motor shaft without pull-out of the synchonism at any speed. To show the validity of proposed control method, the simulation and experimental results are provided. The advantages of the proposed control method are to achieve the fast current and speed responses.

  • PDF

Design of PID-Expert hybrid Controllers (PID-전문가 복합형 제어기 설계)

  • Cho, Hyun-Seob
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.103-108
    • /
    • 2009
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. In this paper, PID-Expert hybrid control method for motor control system as a compensation method solving this problem is presented. If PID control system is stable, the Expert controller is idle. if the error hits the boundary of the constraint, the Expert controller begins operation to force the error back to the constraint set. The disturbance effect decrease remarkably, robust speed control of DC motor using PID-Expert Hybrid controller is demonstrated by the simulation.

  • PDF

A Nonlinear Friction Torque Compensation of Servo System with Double Speed Controller (이중 속도 제어 구조에 의한 서보 제어기의 비선형 마찰 토크 보상)

  • Lee Dong-Hee;Choi Cheol;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.612-619
    • /
    • 2004
  • Servo motor systems with ball-screw and timing-belt are widely used in NC, robot, FA and industrial applications. However, the nonlinear friction torque and damping effect in machine elements reduce the control performance. Especially tracking errors in trajectory control and very low velocity control range are serious due to the break-away friction and Stribeck effects. In this paper, a new double speed controller is proposed for compensation of the nonlinear friction torque. The proposed double speed controller has outer speed controller and inner friction torque compensator. The proposed friction torque compensator compensates the nonlinear friction torque with actual speed and speed error information. Due to the actual information for friction torque compensator without parameters and mathematical model of motor, proposed compensator is very simple structure and the stability is very high. The proposed compensator is verified by simulation and experimental results.

Design of a DSP Controller and Driver for the Power-by-wire(PBW) System Using BLDC Servo Motor (BLDC 전동기를 이용하는 직동력(PBW) 구동시스템의 제어기 및 구동기 설계)

  • Joo, Jae-Hun;Goo, Bon-Min;Kim, Jin-Ae;Zo, Dae-Seong;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.897-900
    • /
    • 2007
  • This paper presents a study on the DSP controller and IGBT inverter driver design for the power-by-wire(PBW) system using BLDC servo motor. This BLDC servo motor system was realized with DSP(Digital Signal Processor) and IGBT inveter module. The PBW system needs speed control of servo motor for linear thrust action. This paper implements a servo controller with vector control and min-max PWM technique. As CPU of controller, TMS320F2812 DSP was adopted because it has PWM(Pulse Width Modulation) waveform generator, A/D(Analog to Digital) converter, SPI( Serial Peripheral Interface) port and many input/output port etc.

  • PDF

A Position Control System of SRM using Digital Hysteresis Controller (디지털 히스테리시스 제어기를 이용한 SRM의 위치제어시스템)

  • 김민회;백원식;김남훈;최경호;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.253-261
    • /
    • 2002
  • This paper presents an implementation of position control system of Switched Reluctance Motor (SRM) using digital hysteresis controller by TMS320F740 DSP. Although SRM possess several advantages including simple structure and high efficiency, but the control thrive system using power semiconductor device is required to drive this motor. The control drive system increases overall system cost. To overcome this problem and increase the application of SRM, it is needed to develope the servo dave system of SRM. So, the position control system of 1 Hp SRM is developed and evacuated by adaptive switching angle control. The position/speed response characteristics and voltage/current waveforms are presented to prove the capability of SRM for a servo drive application. Moreover, digital hysteresis current controller is developed and evaluated by experimental testing for the purpose of system developmental cost reduction.

A Study on the Sliding Mode Control of PMLSM using the Slate Observer (상태관측기에 의한 영구자석 선형동기전동기의 슬라이딩모드제어에 관한 연구)

  • 황영민;신동률;최거승;조윤현;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.71-80
    • /
    • 2002
  • According to the rapid growth of high speed and precise industry, the application of synchronous motor has been increased. In the application fields, these fast dynamic response is of prime importance. In particular, since the PMLSM(Permanent Magnet Linear Synchronous Motor) has characteristics of high speed, high thrust, it has been used in high-performance servo drive. From these reasons, it is recently used for high precise position control, and machine tool. In this paper, a study of the sliding mode with VSS (Variable Structure System) design for a PMLSM is presented. For fast and precise motion control of PMLSM, the compensation of disturbance and parameter variation is necessary. Hence we eliminate the reaching phase use of VSS that is changed to switching function and vector control using the state observer. And we proposed to sliding mode control algorithm so that realize fast response without overshoot, disturbance and parameter variation.

A Development of an Industrial SPMSM Servo Drive System using TMS320F2812 DSP (TMS320F2812 DSP를 이용한 산업용 SPMSM 정밀 제어시스템 개발)

  • Kim Min-Heui;Lim Tae-Hoon;Jeong Jang-Sik;Kim Seong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.138-147
    • /
    • 2005
  • This paper presents a SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) servo drive system using high performance TMS320F2812 DSP for the industrial application. The DSP(Digital Signal Processor) Controller enables an enhanced real time algorithm and cost-effective design intelligent for only exclusively motor drives which can be yield enhanced operation, fewer system components, lower control system cost, increased efficiency and high performance. The suggested system contain speed and current sensing circuits, SVPWM(Space Vector Pulse Width Modulation) and I/O interface circuit. The developed servo drive control system showns a good response characteristics results and high performance features in general purposed 400[w] machine. This system can achieve cost reduction and size minimization of controllers.

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • 김태성;안성찬;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.416-422
    • /
    • 2001
  • The BLDC(Brushless DC) Motor is characterized by linear torque to current and speed to voltage. It has low acoustic noise and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. However, when armature current is commutated, the current ripple is generated by the motor inductance components in stator windings and back-EMF. This current ripple caused to torque ripple. Therefore, it is difficult to apply the BLDC motor to a precision servo drive system. In this paper, a new current control algorithm using fourier series coefficients is proposed. This proposed algorithm can minimize torque ripple due to the phase current commutation of BLDC motor. Simulation and Experimental results prove the effectiveness at the Proposed algorithm through comparison with the conventional unipolar PWM method.

  • PDF

Development of IPM(Intelligent Power Module) IGBT switch performance evaluation system for the driving of the A.C. motor (교류 전동기 구동을 위한 IPM(Intelligent Power Module) IGBT 스위치 성능 분석 방법 개발)

  • Choi, Jung-Keyng
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.291-297
    • /
    • 2022
  • This Paper is about the study that design performance and reliability measurement circuits of the IPM which is an intelligent switching switch module included at an inverter circuits for driving of A.C. Servo motors in home appliance. IPM is a core device of motor driver and it's switching characteristics should be retained uniformly during the driving of a servo system. All of it's specification, the collector emitter switch on voltage Vce(on) spec. is very important. As the IPM are core part of inverters and producing from several brands and versions, for optimal performances of application systems a method and measurement & evaluation system to measure Vce(on) value, collector emitter switch on voltage, of the IPM IGBT switches with various brands are required. Especially, the proposed method can measure and evaluate Vce(on) values of IPM with load at mounting state on the motor driving circuits and proposed measurement & evaluation system can be important instrument systems for IPM user companies.

A Novel Utilization Method of the Predicted Current in the High Performance PI Current Controller with a Control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.426-430
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under both the control time delay and the inevitable current prediction error. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the control time delay and the inevitable current prediction error in the servo drive system.