• Title/Summary/Keyword: 생태수리학

Search Result 69, Processing Time 0.034 seconds

Impacts assessment of Climate change on hydrologic cycle changes in North Korea based on RCP climate change scenarios I. Development of Long-Term Runoff Model Parameter Estimation for Ungauged Basins (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 I. 미계측유역의 장기유출모형 매개변수 추정식 개발)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.28-38
    • /
    • 2019
  • Climate change on the Korean peninsula is progressing faster than the global average. For example, typhoons, extreme rainfall, heavy snow, cold, and heatwave that are occurring frequently. North Korea is particularly vulnerable to climate change-related natural disasters such as flooding and flooding due to long-term food shortages, energy shortages, and reckless deforestation and development. In addition, North Korea is classified as an unmeasured area due to political and social influences, making it difficult to obtain sufficient hydrologic data for hydrological analysis. Also, as interest in climate change has increased, studies on climate change have been actively conducted on the Korean Peninsula in various repair facilities and disaster countermeasures, but there are no cases of research on North Korea. Therefore, this study selects watershed characteristic variables that are easy to acquire in order to apply localization model to North Korea where it is difficult to obtain observed hydrologic data and estimates parameters based on meteorological and topographical characteristics of 16 dam basins in South Korea. Was calculated. In addition, as a result of reviewing the applicability of the parameter estimation equations calculated for the fifty thousand, Gangneungnamdaecheon, Namgang dam, and Yeonggang basins, the applicability of the parameter estimation equations to North Korea was very high.

Spatial and Temporal Variations of Phytoplankton in Ch$\check{o}$nsu Bay (천수만 식물 플랑크톤의 공간적, 시간적 변화)

  • Shim, Jae Hyung;Yeo, Hwan Goo
    • 한국해양학회지
    • /
    • v.23 no.3
    • /
    • pp.130-145
    • /
    • 1988
  • Spatial distribution and temporal variations of phytoplankton population were investigated in Ch$\check{o}$nsu Bay, the Korean western coast. Diurnal fluctuations of phytoplankton standing crop are associated with semidiurnal tidal cycle, as high concentration at low tide and low at high tide. In monthly variations of phytopolankton standing crop, the 1st peak occurrs in March and the 2nd one in August. The study area could be divided into two parts, outer bay and inner bay according to the physical and biological factors such as water temperature and salinity, and phytoplankton distribution patterns. The northern waters of the bay, however, may be affected by irregular fresh water influx through the lock of the dike. Because of the hydrographical differences among the surveyed stations, phytoplankton species succession patterns of each station have some differences. On the whole in this study area, Paralia sulcata and Skeletonema costatum are dominant species all the year round. However, except June, Paralia sulcata, a tychopelagic diatom is not dominant species at Station 6 (northern end of the bay). This seems to be caused by the fact that the waters of northern part of the bay is less turbulent than that of the outer bay. The result of principal component analysis (PCA) indicates that Ch$\check{o}$nsu Bay is normal coastal ecosystem where the environmental conditions are cycled in a year, and water temperature and nitrogenous nutrients such as nitrate, nitrite and ammonia are major factors to influence the annual cycle of environmental conditions.

  • PDF

Development of small constructed wetland for urban and roadside areas (도시 및 도로 조경공간을 활용한 소규모 인공습지 조성 기술)

  • Kang, Chang-Guk;Maniquiz, Marla C.;Son, Young-Gyu;Cho, Hye-Jin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.231-242
    • /
    • 2011
  • Recently, the green spaces in the urban areas were greatly reduced due to urbanization and industrialization. As urban structures such as roads and buildings are built, the amount of impervious area within a watershed increases. High impervious surfaces are the common causes of high runoff volumes as the soil infiltration capacity decreases and the volume and rate of runoff increase thereby decreasing the groundwater recharge. These effects are causing many environmental problems, such as floods and droughts, climate change, heat island phenomenon, drying streams, etc. Most cities attempted to reduce sewer overflows by separating combined sewers, expanding treatment capacity or storage within the sewer system, or by replacing broken or decaying pipes. However, these practices can be enormously expensive than combined sewer overflows. Therefore, in order to improve these practices, alternative methods should be undertaken. A new approach termed as "Low Impact Development (LID)" technology is currently applied in developed countries around the world. The purpose of this study was to effectively manage runoff by adopting the LID techniques. Small Constructed Wetland(Horizontal Subsurface Flow, HSSF) Pilot-scale reactors were made in which monitoring and experiments were performed to investigate the efficiency of the system in removing pollutants from runoff. Based on the results of the Pilot-plant experiments, TSS, $COD_{Cr}$, TN, TP, Total Pb removal efficiency were 95, 82, 35, 91 and 57%, respectively. Most of the pollutants were reduced after passing the settling tank and the vertical filter media. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.

Biodegradability of Artificial Bait for Blue Crab Pots and Its Effect on Seawater Quality (꽃게 통발용 인공미끼의 생분해도 및 해양수질 영향)

  • Jeong, Byung-Gon;Koo, Jae-Geun;Chang, Ho-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.96-103
    • /
    • 2009
  • The biodegradability in water of the artificial baits for blue crab pots which were made of intestines of mackerel, tuna and grinded krill were studied. The biodegradability of artificial bait was evaluated with the effective capacity of 10L water tank which was made of acryl pipe at the velocity of 1m/d and hydraulic retention time of 12 hours. For the 23 days operation time, all artificial baits were degraded fast at the early stage of operation time and stabilized within 5 days after start up. The rates of biodegradation were different depending on the raw materials of artificial baits. In terms of degradation rate of organic matter which can be expressed as COD, artificial bait made of tunas intestine showed the fastest degradation rate. On the other hand, in terms of degradation rate of nitrogenous matter which can be expressed as ammonia nitrogen, artificial bait made of mackerels intestine showed the fastest degradation rate. In order to evaluate the effect of artificial bait on marine ecosystem, seawater qualities including SS, COD, DO, nitrogen, phosphorus were determined depending on depth and location during 2 days test operation period. It is apparent that the effect of artificial bait on seawater quality was negligible when comparing seawater quality of test operation area with control area.

  • PDF

Flow Analysis Based on the Recovery of Lateral Connectivity in the River (하천 내 횡적 연결성 회복을 통한 흐름 해석)

  • Lee, Jin Woo;Chun, Seung Hoon;Kim, Kyu-Ho;Kim, Chang Wan
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.213-220
    • /
    • 2014
  • Recently, river maintenance is change due to concern for the environment increases. Thus, the river restoration and river environment is best part of river maintenance. In case of Korea, existing river is improvement straightly for flood control and transportation. When the stream channel is straightly, maintain stability is important. Thus, construction of levees along the river. The various river structures for the purpose of flood control and transportation are inhibit factors of longitudinal and lateral connectivity. Connectivity is defined as the maintenance of lateral, longitudinal, and vertical pathways for biological, hydrological, and physical processes. Long-term point of view, increased connectivity is very important for a healthy ecosystem composition. As the first step of river restoration, this study described theory and concept of river continuum and the numerical model was applied to a real topography to simulate the flow analysis with or without segregated and blocked space in the Mankyung river. The results of this study can be utilized to develop the watershed connectivity assessments methods in order to the river restoration.

Univariate Analysis of Soil Moisture Time Series for a Hillslope Located in the KoFlux Gwangneung Supersite (광릉수목원 내 산지사면에서의 토양수분 시계열 자료의 단변량 분석)

  • Son, Mi-Na;Kim, Sang-Hyun;Kim, Do-Hoon;Lee, Dong-Ho;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.88-99
    • /
    • 2007
  • Soil moisture is one of the essential components in determining surface hydrological processes such as infiltration, surface runoff as well as meteorological, ecological and water quality responses at watershed scale. This paper discusses soil moisture transfer processes measured at hillslope scale in the Gwangneung forest catchment to understand and provide the basis of stochastic structures of soil moisture variation. Measured soil moisture series were modelled based upon the developed univariate model platform. The modeling consists of a series of procedures: pre-treatment of data, model structure investigation, selection of candidate models, parameter estimation and diagnostic checking. The spatial distribution of model is associated with topographic characteristics of the hillslope. The upslope area computed by the multiple flow direction algorithm and the local slope are found to be effective parameters to explain the distribution of the model structure. This study enables us to identify the key factors affecting the soil moisture distribution and to ultimately construct a realistic soil moisture map in a complex landscape such as the Gwangneung Supersite.

Analysis on New Research Opportunities and Strategies for Earth Sciences in the United States (미국 지질과학분야 신규 연구주제 및 전략분석)

  • Kim, Seong-Yong;Ahn, Eun-Young;Bae, Jun-Hee;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2016
  • The essential role of the Division of Earth Sciences(EAR) in the Directorate of Geoscience(GEO) of National Science Foundation of America(NSF) is to support basic research aimed at acquiring fundamental knowledge of the Earth system that can be directly applied to the United States' strategic needs. The 2011 Committee on New Research Opportunities in the Earth Sciences(NROES) of the National Academy of Sciences(NAS) identified specific areas of the basic earth science research scope of the EAR that were poised for rapid progress during the next decade. Quantified by interdisciplinary approaches, the Committee highlighted the following topics relating to the EAR Deep Earth Processes and Surface Earth Processes sections: (1) the early Earth; (2) thermochemical internal dynamics and volatile distribution; (3) faulting and deformation processes; (4) interactions among climate, the Earth surface processes, tectonics, and deep Earth processes; (5) co-evolution of life, environment, and climate; (6) coupled hydrogeomorphic-ecosystem response to natural and anthropogenic change; and (7) interactions of biogeochemical and water cycles in terrestrial environments. We also promote future research challenges such as the critical zone studies. In order to promote more active such a huge future research challenges, additional research support policies are needed.

Annual cycles of nutrients and dissolved oxygen in a nutrient-rich temperate coastal bay, Chinhae Bay, Korea (영양염류가 풍부한 온대 해역 내만(한국, 진해만)에서의 영양염류와 용존산소의 연변화)

  • HONG, GI HOON;KIM, KYUNG TAE;PAE, SE JIN;KIM, SUK HYUN;LEE, SOO HYUNG
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.204-222
    • /
    • 1991
  • The annual cycles of plant major nutrients and dissolved oxygen in a nutrients-rich semi-enclosed coastal inlet, chinhae Bay, of the southern coast of the Korean Peninsula are first presented. The water column of the bay is stratified during summer (April-late September) and well0mixed during winter (October-March). During the summer stratification period, dissolved oxygen contents exceed 400uM in the surface but diminish to less than 50uM in the near bottom waters, which often results in an anoxic environment in the inner part of Chinhae Bay. After the breakdown of the stratification in October, dissolved oxygen concentration remains undersaturated until February. The evidence of allochthonous input of N-nutrients throughout the year is readily seen in the water column: however. crude budget calculations show that the nutrients are efficiently utilized within the bay ecosystem, and that export of the nutrients from the bay to the shelf must be negligible. There is no sign of the enrichment of the nutrients in the water column. The eutrophication phenomenon sensu stricto is not observed in chinhae Bay. Using the standing stock of dissolved oxygen and estimation of the oxygen fluxes across the air-sea boundary, a benthic oxygen respiration rate during winter is estimated conservatively at 21-24 mmol Cm/SUP -2/d/SUP -1/. this oxygen respiration rate accounts for about 20% of the total phytoplankton production in winter.

  • PDF

Geochemical Characteristics of Scirpus planiculmis Habitats in Nakdong Estuary, Korea (낙동강 하구 새섬매자기 군락지 지화학 연구)

  • Kim, Yunji;Kang, Jeongwon;Choi, Jae Ung;Park, Chan Mi;Woo, Han Jun
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2019
  • The Nakdong Estuary has experienced hydraulic and topographic changes over the last century, which have had negative effects of habitat loss and fragmentation. The population of Scirpus planiculmis, a major food plant for wintering birds in Nakdong Estuary, has decreased over the last decade. To identify factors that influence S. planiculmis population, 6 short core samples (about 30cm) were collected in June and August, 2018. The sand percentage was over 80% in every samples and the average sediment salinity in June and August were $17.8{\pm}1.12psu$ and $18.4{\pm}1.83psu$, respectively. ${\delta}^{13}C$ of sediment cores varied from -25.4‰ to -22.6‰ which fall within the estuarine particulate organic matters. In cores collected in Eulsuk area, the highest ${\delta}^{13}C$ values were observed at the surface (0~1cm) indicating inputs of marine POM (particulate organic matter) to the Nakdong Estuary. No significant difference between vegetation and non-vegetation stations was observed in every items we investigated which might indicate that the physicochemical environment of vegetation area is almost same as that of non-vegetation area. Therefore, the high sand percentage and sediment salinity of Nakdong Estuary might affect the reduction in S. planiculmis population.

Investigation on Design Aspects of the Constructed Wetlands for Agricultural Reservoirs Treatment in Korea (농업용 저수지 수질개선을 위한 국내 인공습지 설계 및 시공실태 조사)

  • Kim, Youngchul;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • To improve the water quality of agricultural reservoirs, constructed wetlands are applied in many places. These are technologies that establish ecosystems and important design factors include water depth distribution, inflow and outflow, water flow distribution, hydraulic residence time, water quality treatment efficiency, aspect ratio, and the distribution of open water and covered water surfaces. For high efficiency during the operation of a constructed wetland, the design needs to be optimized and this requires consideration of the different types and length of the intake dam as well as the type and connection of wetland cells. Therefore, this study was conducted to investigate and suggest factors that needs to be considered during the design and for efficient operation measures through field surveys of 23 constructed wetlands that have been established and operated in agricultural reservoirs. Results of the field investigation shows that several sites were being operated improperly due to the malfunctioning or failure of the water level sensors, sedimentation in the intake dam, and clogging of the mechanical sluice frames. In addition, it was found that as the length of the inlet channel increases, the ecological disconnection between the intake dam upstream and the wetland outlet downstream also increases and was identified as a problem. Most of the wetlands are composed of 2 to 5 cells which can result to poor hydraulic efficiency and difficulty in management if they are too large. Moreover, it was found that the flow through a small wetland can be inadequate when there are too many cells due to excessive amounts of headloss.