• Title/Summary/Keyword: 생체연소

Search Result 18, Processing Time 0.034 seconds

A Study on Smart Heart Rate Manager to support Health Care (스마트 심박관리기 설계에 관한 연구)

  • Park, Hyun-Sung;Yu, Ji-Su;Joe, Dong-Ki;Kim, Min-Woo;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.625-627
    • /
    • 2014
  • 모바일 헬스케어의 기본 개념은 '치료'가 아닌 '관리'에 있다. 심박수 측정으로 내가 가진 운동 능력을 얼마나 사용하고 있는지 또는 얼마나 사용할 것인지 조절할 수 있고 자신에게 필요한 운동을 맞춤형식으로 조절이 가능하다. 선행연구에서 다뤘던 심박수 구간별 3대 영양소 연소 비율을 통해 다이어트를 목적으로 운동을 조절할 수도 있고 근력 강화를 위해 전문 트레이닝을 강행 할 수도 있다. 본 연구에서는 건강관리를 위한 생체신호 측정 센서 기반 스마트 기기로 심장수을 믈루투스를 사용하여 측정하고 이상을 예측 보고할 수 있는 프로토타입을 개발하고, 정성적, 정략정 평가를 설시하였다. 향후, 사용성 평가 결가를 기반으로 도출된 문제점의 수정 보완을 통해 최종 센서기반 스마트 심장박동 관리기를 구성하고자 한다.

Assessment of the Effect of Dimethyl Ether (DME) Combustion on Lettuce and Chinese Cabbage Growth in Greenhouse (온실에서 상추와 배추를 이용한 DME 원료 난방 효율분석)

  • Basak, Jayanta Kumar;Qasim, Waqas;Khan, Fawad;Okyere, Frank Gyan;Lee, Yongjin;Arulmozhi, Elanchezhian;Park, Jihoon;Cho, Wonjun;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • The experiment was conducted to determine the performance of DME combustion gas when used as a fuel for DME burner for raising temperature and $CO_2$ concentration in greenhouse and also to examine its effects on chlorophyll content, and fresh and dry weight of lettuce and Chinese cabbage. DME-1 and DME-2 treatments consisted of average DME flow quantity in duct were $17.4m^3min^{-1}$ and $10.2m^3min^{-1}$ respectively to greenhouse-1 and greenhouse-2 and no DME gas was supplied to greenhouse-3 which was left as control (DME-3). DME supply times were $0.5hr\;day^{-1}$, $1hr\;day^{-1}$, $1:30hrs\;day^{-1}$ and $2hrs\;day^{-1}$ on week 1, 2, 3, and 4 respectively. Chlorophyll content and fresh and dry weight of lettuce and Chinese cabbage were measured for each treatment and analyzed through analysis of variance with a significance level of P<0.05. The result of the study showed that $CO_2$ concentration increased up to 265% and 174% and the level of temperature elevated $4.8^{\circ}C$ and $3.1^{\circ}C$ in greenhouse-1 and 2, respectively as compared to greenhouse-3 due to application of DME combustion gas. Although, the same crop management practices were provided in greenhouse-1, 2 and 3 at a same rate, the highest change (p<0.05) of chlorophyll content, fresh weight and dry weight were found from the DME-1 treatment, followed by DME-2. As a result, DME combustion gas that raised the level of temperature and $CO_2$ concentration in the greenhouse-1 and greenhouse-2, might have an effect on growth of lettuce and Chinese cabbage. At end of experiment, the highest fresh and dry weight of lettuce and Chinese cabbage were measured in greenhouse-1 and followed by greenhouse-2. Similarly chlorophyll content of greenhouse-1 and greenhouse-2 were more compared to greenhouse-3. In general, DME was not producing any harmful gas during its combustion period, therefore it can be used as an alternative to conventional fuel such as diesel and liquefied petroleum gas (LPG) for both heating and $CO_2$ supply in winter season. Moreover, endorsed quantify of DME combustion gas for a specified crop can be applied to greenhouse to improve the plant growth and enhance yield.

Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area (수도권 지역에서 기상-대기질 모델링을 위한 VOC와 PM2.5의 화학종 분류 및 시간분배계수 산정)

  • Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.36-50
    • /
    • 2015
  • The purpose of this study is to assign emission source profiles of volatile organic compounds (VOCs) and particulate matters (PMs) for chemical speciation, and to correct the temporal allocation factor and the chemical speciation of source profiles according to the source classification code within the sparse matrix operator kernel emission system (SMOKE) in the Seoul metropolitan area. The chemical speciation from the source profiles of VOCs such as gasoline, diesel vapor, coating, dry cleaning and LPG include 12 and 34 species for the carbon bond IV (CBIV) chemical mechanism and the statewide air pollution research center 99 (SAPRC99) chemical mechanism, respectively. Also, the chemical speciation of PM2.5 such as soil, road dust, gasoline and diesel vehicles, industrial source, municipal incinerator, coal fired, power plant, biomass burning and marine was allocated to 5 species of fine PM, organic carbon, elementary carbon, $NO_3{^-}$, and $SO_4{^2-}$. In addition, temporal profiles for point and line sources were obtained by using the stack telemetry system (TMS) and hourly traffic flows in the Seoul metropolitan area for 2007. In particular, the temporal allocation factor for the ozone modeling at point sources was estimated based on $NO_X$ emission inventories of the stack TMS data.

Estimation of the major sources for organic aerosols at the Anmyeon Island GAW station (안면도에서의 초미세먼지 유기성분 주요 영향원 평가)

  • Han, Sanghee;Lee, Ji Yi;Lee, Jongsik;Heo, Jongbae;Jung, Chang Hoon;Kim, Eun-Sill;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.135-144
    • /
    • 2018
  • Based on a two-year measurement data, major sources for the ambient carbonaceous aerosols at the Anmyeon Global Atmosphere Watch (GAW) station were identified by using the Positive Matrix Factorization (PMF) model. The particulate matter less than or equal to $2.5{\mu}m$ in aerodynamic diameter (PM2.5) aerosols were sampled between June 2015 to May 2017 and carbonaceous species including ~80 organic compounds were analyzed. When the number of factors was 5 or 6, the performance evaluation parameters showed the best results, With 6 factor case, the characteristics of transported factors were clearer. The 6 factors were identified with various analyses including chemical characteristics and air parcel movement analysis. The 6 factors with their relative contributions were (1) anthropogenic Secondary Organic Aerosols (SOA) (10.3%), (2) biogenic sources (24.8%), (3) local biomass burning (26.4%), (4) transported biomass burning (7.3%), (5) combustion related sources (12.0%), and (6) transported sources (19.2%). The air parcel movement analysis result and seasonal variation of the contribution of these factors also supported the identification of these factors. Thus, the Anmyeon Island GAW station has been affected by both regional and local sources for the carbonaceous aerosols.

Influences of Polycyclic Aromatic Hydrocarbons on Soybean and Rice Growth (다환방향족탄화수소가 콩과 벼의 생육에 미치는 영향)

  • Kim, Young-Ju;Shim, Doo-Bo;Song, Sun-Hwa;Kim, Seok-Hyeon;Chung, Jong-Il;Kim, Min-Chul;Chung, Jeong-Sung;Kim, Hyung-Gon;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • Polycyclic aromatic hydrocarbons (PAHs) are a group of ubiquitous hazardous pollutants derived from fossil fuel, various combustion sources and pyrolysis of a wide range of plastics. Because PAHs can be uptake into crop plants, the inhibitory effects on rice and soybean plants were examined in greenhouse and growth chamber experiment. Soil-applied PAHs (phenanthrene of 0, 10, 30, 100 ppm) slightly reduced the plant height and dry weight both in transplanted rice and soybean plant. The inhibitory effect on growth was greater in soybean than rice. Plant height of soybean plants treated by 100 ppm was 58.9 cm and this value was 87.2% of untreated plant. In rice plant, the plant height was less inhibited (96.0% of untreated plant) by 100 ppm at 80 days after treatment (DAT). However, leaf chlorophyll content and chlorophyll fluorescence were less inhibited by PAHs at late growth stage (after heading) although the photosynthesis-related parameters were slightly inhibited from 20 DAT to 70 DAT. In agar medium experiment with infant seedlings, inhibition of seedling length and fresh weight by phenanthrene at 100 ppm were greater as compared to the experiment with adult plant in pot. Seedling length and fresh weight were reduced by 54.2% and 33.3% for rice and 27.9% and 13.2% for soybean, respectively. The results reflected that PAHs were more inhibitory during juvenile stage than adult stage and more inhibitory to rice plant than soybean for juvenile stage.

A Study on Toxicity Bio-markers of a Mouse using Combustion Gas SO2 generated from Fire (마우스(mouse)를 이용한 건축물 마감재료 연소가스 SO2의 독성생체지표 연구)

  • Rie, Dong-Ho;Cho, Nam-Wook;Choi, Soon-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2012
  • This study was carried out to observe the impacts of a mouse's inhalation of toxic gas SO2 generated from combustion on its organs by different concentrations. As for research methods: First, after concentrations of SO2 generation from combustion had been set to three: low (10.4 ppm), middle (24.9 ppm) and high (122 ppm) through Gas Toxicity Testing Method (KS F 2271) and SO2 combustion gas was exposed to eight mice in each concentration. Five mice that were able to move based on LD50, a criterion, which sets the down time of a mouse's average behaviors to over 9 minutes, were randomly selected in each concentration, and they were set up as the subjects of the study on toxicity bio-markers. Second, tissues were taken from heart, liver, lungs, spleen and the thymus gland of the mice selected in each concentration and a pathological examination of them was carried out. As a result, microvascular congestion appeared in the heart, and cell necrosis, cortex congestion and tubule medulla congestion, etc. in each concentration were observed in addition to vascular congestion in liver, lungs, spleen and the thymus gland. Also, it was found that the higher the concentrations of SO2 exposure is, the greater, the changes in the organs get. Through this study, SO2 of various toxic gases generated from fire turned out to affect the tissues of each organ of a mouse, it is expected that the toxic gases may greatly affect human body in case of actual fire, and this study is evaluated as having a significance as a basic data on inhalation toxicity assessment of toxic substances generated in combustion.

Effects of Quinclorac on Early Growth of Follow-up Crops of Paddy Rice and Solanaceae (Quinclorac이 답후작(畓後作) 작물(作物)과 가지과(科) 식물(植物)의 초기생육(初期生育)에 미치는 영향(影響))

  • Shin, Hyeun-Won;Shim, Sang-In;Lee, Sang-Gak;Kang, Byeung-Hoa
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.213-220
    • /
    • 1995
  • These experiments were conducted to clarify the effects of residues of quinclorac on several follow-up crops of paddy rice and Solanaceae species and to know the concentrations causing the phytotoxicity to several crops. Among them, the extent of injury in barley was smaller than that of other crops, whereas those of tomato plant and egg plant were higher. Tomato plant turned out to be the most sensitive to quinclorac in hydroponics. When tomato plant was treated with quinclorac at the concentration less than 10ppb in soil, the plant height, the root length, the number of fruits and the fresh weight of fruits increased, but they decreased at the higher concentrations than that. The responses of reproductive organs were very sensitive to quinclorac; the number of fruits and fresh weight of fruits decreased rapidly at the concentration higher than 10ppb. On the contrary, the responses of the vegetative organs were relatively small. The content of chlorophyll in leaves decreased when tomato plant as treated with quinclorac. The content of soluble protein in leaves decreased at high concentrations of quinclorac above 100ppb but it increased at low concentrations. However, the content of soluble sugar in leaves increased as quinclorac was treated increasingly.

  • PDF

Energy Usage and Emissions of Air Pollutants in North Korea (북한 에너지 사용과 대기오염물질 배출 현황)

  • Kim, In-Sun;Lee, Ji-Yi;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.303-312
    • /
    • 2011
  • Data on the energy usage including biomass, emissions of air pollutants ($SO_x$, $NO_x$, CO), and the air quality in North Korea are analyzed. The energy usage in North Korea has decreased in the 1990s and thus, the emission amount of air pollutants. Coal and biomass constitute a major fraction of energy sources since the 1990s. It is identified that the emission amount of air pollutants per unit energy consumption in North Korea is much higher than South Korea for the period data are available (since 1990) implying that the air pollutant emission management system in North Korea is inadequate. In particular, the amount of biomass burning for household cooking and heating is significant with the huge emissions of air pollutants such as CO and organic species both in the gas and aerosol phase. Furthermore, it is found that the existing energy usage and air pollutant emission data are not consistent in biomass burning related data.