• Title/Summary/Keyword: 생체모방

Search Result 227, Processing Time 0.042 seconds

The Physical Property of the Structural Color Yarn and Fabric for Emotional Garment Using Biomimetic Technology (생체모방기술을 응용한 감성의류용 구조발색사와 직물의 물성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • This study investigated the structural coloration and fabric hand of the caustic reduced fabrics for emotional garment using structural color yarns, which was spun by 37 alternating nylon and polyester layers capable of producing basic colors using biomimetic technology. The colorations of the three kinds of structural color yarns were confirmed using multi angle spectro-photometer, and their triangular cross sections composed with 37 alternating nylon and polyester layers were measured using SEM and were discussed with layer length in relation with coloration and spinning conditions were also set up. The apparent color difference and reflectance of the three kinds of fabrics with different density and weave pattern were analysed as ranging from 400nm to 700nm. The optimum fabric structural design which is made by warp and weft densities(194ends/in ${\times}$ 105picks/in) and caustic reduction condition by $100^{\circ}C$ temperature and 60minutes with NaOH, 20g/l solution were decided through analysis of the mechanical properties and fabric hands of these three kinds of fabrics treated with 3 kinds of the caustic reduction conditions. And it was shown that the rate of caustic reduction was increased from 13% to 23% with increasing temperature and time of caustic reduction. The extensibility, bending rigidity and shear modulus of caustic reduction treated fabrics were decreased by treatment of caustic reduction, on the other hand fabric compressibility was increased. And it was shown that the hand value of specimen number one which was treated with temperature $100^{\circ}C$ and time 60minute was the best and the hand of this fabric was better than that of Morpho $fabric^{(R)}$ made by Teijin co. Japan.

  • PDF

Biomimetic Engineering of Carbon Dioxide Capture (생체모방공학을 이용한 이산화탄소 포집)

  • Kim, Dae-Hoon;Vinoba, Mari;Shin, Woo-Sup;Lim, Kyong-Soo;Jeong, Soon-Kwan;Kim, Sung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.491-494
    • /
    • 2010
  • 지구온난화의 주범인 온실가스 중 이산화탄소 농도 증가에 따라 현재 전 세계적으로 사회적, 환경적, 경제적으로 피해가 나타나고 있다. 그래서 CCS연구를 적용하여 이산화탄소를 포집하는 연구가 활발하게 진행 되고 있으나 분리, 수송, 저장 등의 추가적인 비용이 발생하는 문제점을 가지고 있다. 본 논문은 생체촉매효소를 이용하여 이산화탄소를 포집하는 연구를 하였다. 반응온도, pH, 이산화탄소 농도 등의 변수를 이용한 생체촉매효소의 활성평가, 반응속도, 광물화의 특성에 관하여 연구하였다.

  • PDF

M-13 박테리오파지 기반 나노구조를 이용한 생체모방 컬러 디스플레이 개발

  • Kim, Chun-Tae;Kim, Won-Geun;Sin, Chang-Hyeon;O, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.293.2-293.2
    • /
    • 2013
  • 구조색에 기반을 둔 반사형 디스플레이는 낮은 전력 소모와 쉬운 제조 과정뿐만 아니라 후광 없이 작동이 가능한 장점으로 인해 최근 많은 주목을 받고 있다. 하지만 기술적으로 다양한 색체 구현이 어려워 현재까지는 많이 응용되고 있지는 않다. 이에 본 연구에서 우리는 바이러스(M13-박테리오파지)를 기반으로 한 신개념 컬러 디스플레이를 개발하고자 한다. 우리가 개발하고자 하는 컬러디스플레이는 자가 조립방법으로 만들어진 나노 구조체로 형성되어 있으며, 간단한 실험 조건 조절을 통해 다양한 색깔 구현을 할 수 있다. 특히, MEMS 공정으로 자체 제작한 Micro Heater의 온도 조절을 통해 자가 조립된 나노 구조체의 간격 주기를 조절 하면, 기존에 형성된 색을 원하는대로 자유롭게 바꿀 수 있다. 우리가 개발하고자하는 생체 재료 기반 컬러 소자는 차세대 디스플레이의 또 다른 새로운 시도가 되리라 생각한다.

  • PDF

Wirelessly Driven Cellulose Electro-Active Paper Actuator: Application Research (원격구동 셀룰로오스 종이 작동기의 응용연구)

  • Kim, Jae-Hwan;Yang, Sang-Yeol;Jang, Sang-Dong;Ko, Hyun-U;Mun, Sung-Cheol;Kim, Dong-Gu;Kang, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.539-543
    • /
    • 2012
  • Cellulose Electro-Active Paper (EAPap) is attractive as a biomimetic actuator because of its merits: it is lightweight, operates in dry conditions, has a large displacement output, has a low actuation voltage, and has low power consumption. Cellulose is regenerated so as to align its microfibrils, which results in a piezoelectric paper. When chemically bonded and mixed with carbon nanotubes, titanium oxide, zinc oxide, tin oxides, the cellulose EAPap can be used as a hybrid nanocomposite that has versatile properties and that can meet the requirements of many application devices. This paper presents trends in recent research on the cellulose EAPap, mainly on material preparation and its use in devices, including biosensors, chemical sensors, flexible transistors, and actuators. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for use in biomimetic robotics and micro-aerial vehicles.

Bio-inspired Node Selection and Multi-channel Transmission Algorithm in Wireless Sensor Networks (무선 센서망에서 생체시스템 기반의 전송노드 선택 및 다중 채널 전송 알고리즘)

  • Son, Jae Hyun;Yang, Yoon-Gi;Byun, Hee-Jung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • WireWireless sensor networks(WSNs) are generally comprised of densely deployed sensor nodes, which causes highly redundant sensor data transmission and energy waste. Many studies have focused on energy saving in WSNs. However, delay problem also should be taken into consideration for mission-critical applications. In this paper, we propose a BISA (Bio-Inspired Scheduling Algorithm) to reduce the energy consumption and delay for WSNs inspired by biological systems. BISA investigates energy-efficient routing path and minimizes the energy consumption and delay using multi-channel for data transmission. Through simulations, we observe that the BISA archives energy efficiency and delay guarantees.

Implementation of Underwater Entertainment Robots Based on Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크에 기반한 엔터테인먼트용 수중 로봇의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Song, Min-Gyu
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.255-262
    • /
    • 2009
  • We present an autonomous entertainment dolphin robot system based on ubiquitous sensor networks(USN). Generally, It is impossible to apply to USN and GPS in underwater bio-mimetic robots. But An Entertainment dolphin robot which presented in this paper operates on the water not underwater. Navigation of the underwater robot in a given area is based on GPS data and the acquired position information from deployed USN motes with emphasis on user interaction. Body structures, sensors and actuators, governing microcontroller boards, and swimming and interaction features are described for a typical entertainment dolphin robot. Actions of mouth-opening, tail splash or water blow through a spout hole are typical responses of interaction when touch sensors on the body detect users' demand. Dolphin robots should turn towards people who demand to interact with them, while swimming autonomously. The functions that are relevant to human-robot interaction as well as robot movement such as path control, obstacle detection and avoidance are managed by microcontrollers on the robot for autonomy. Distance errors are calibrated periodically by the known position data of the deployed USN motes.

Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane (생체모방형 아쿠아포린 분리막을 이용한 압력지연삼투 발전 성능분석)

  • Choi, Wook;Bae, Harim;Lee, Hyung-Keun;Lee, Jonghwi;Kim, Jong Hak;Park, Chul Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.317-322
    • /
    • 2015
  • Salinity gradient power is a system which sustainably generates electricity for 24 hrs, if the system is constructed at a certain place where both seawater and river water are consistently pumped. Since power is critically determined by the water flux and the salt rejection, a membrane of water-semipermeable aquaporin protein in cell membranes was studied for pressure-retarded osmosis. NaCl was used as a salt, and $NaNO_3$ was used as a candidate to check the ion selectivity. The water flux of biomimetic aquaporin membranes was negligible at a concentration below 2M. Also, there is no remarkable dependence of water flux and ion selectivity on concentrations higher than 3M. Therefore, the biomimetic aquaporin membrane could not be applied into pressure-retarded osmosis; however, if a membrane could overcome the current limitations, the properties shown by natural cells could be accomplished.

Fabrication of a biomimetic hierarchical surface structure replicated from a lotus leaf (연꽃잎 모사를 통한 생체모방 계층적 표면 구조 제작)

  • Lee, Hyeong-Jin;Kim, Min-Seong;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.108-108
    • /
    • 2017
  • 다양한 생체 재료들을 이용한 마이크로 및 나노 크기의 표면 구조 모사는 조직공학에서 세포의 성장 및 분화에 영향을 미치는 것으로 알려져 있다. 특히, 마이크로-나노 구조가 공존하는 계층적 표면 구조는 골 아세포의 증식과 분화에 탁월하여 뼈 조직 재생에 응용되어 왔다. 기존에는 화학적 처리 기법을 이용하여 마이크로 표면 구조가 제작 되었으나 미세 거칠기 및 계층적 표면 구조의 제어가 어려웠다. 현재 이러한 문제점들을 극복하기 위해 플라즈마를 이용한 애칭 기법이 주로 이용되고 있으나 높은 온도 공정 환경에 의한 재료 선택의 한계점 및 오랜 공정 시간에 의한 플라즈마 처리 효율이 감소되어 원하는 표면구조 및 거칠기를 얻을 수 없다는 단점이 있다. 본 연구에서는 이러한 문제점들을 극복하기 위해 마이크로/나노 주조 기법 이용하여 생체적합성 합성고분자 poly(${\varepsilon}$-caprolactone) (PCL) 위에 연꽃잎 구조를 모사한 후 플라즈마 애칭 기법을 이용하여 마이크로-($3.01-3.07{\mu}m$)와 나노크기 ($97{\pm}16nm$)를 동시에 갖는 계층적 구조를 제작하였다. 제작된 구조의 효능을 관찰하기 위해 조골세포를 배양한 결과 평평한 PCL 구조보다 제작된 계층적 구조가 높은 세포성장률 (>2.9배)및 세포 분화도(>2.1배)를 보였다. 이러한 결과는 새로운 표면 공학적 모델로서 손상된 뼈 및 치아조직 재생을 위한 적합한 거칠기 및 표면적인 환경을 제공해 빠른 재생 능력과 더불어 치료기간의 단축을 가져 올 수 있을 것으로 사료된다.

  • PDF

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.