• Title/Summary/Keyword: 생쥐 배아줄기세포

Search Result 27, Processing Time 0.019 seconds

Production of Chimeric Mice Following Transgenesis of Multipotent Spermatogonial Stem Cells (유전자변형 다분화능 정원줄기세포를 이용한 키메라 생쥐의 생산)

  • Lim, Jung-Eun;Eum, Jin-Hee;Kim, Hyung-Joon;Park, Jae-Kyun;Lee, Hyun-Jung;Lee, Dong-Ryul
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.305-312
    • /
    • 2009
  • Multipotent spermatogonial stem cells (mSSCs), derived from uni-potent SSC, are a type of reprogrammed cells with similar characteristics to embryonic stem cells (ESCs). The aim of this study was to evaluate the potential for transgenesis of mSSC derived from outbred mice and the production of transgenic animal by the mSSC-insertion into embryo. mSSCs, established from outbred mice (ICR strain) in the previous study, were maintained and then transfected with a lenti-viral vector expressing green fluorescent protein (GFP), CS-CDF-CG-PRE. Embryonic stem cells (ESCs) were derived from inbred transgenic mice (C57BL/6-Tg (CAG-EGFP)) and were used as an experimental control. Transfected mSSCs were well proliferated in vitro and maintained their characteristics and normal karyotype. Ten to twelve mSSCs and ESCs were collected and inserted into perivitelline space of 8-cell mouse embryos, and then transferred them into uteri of poster mothers after an additional 2-days of culture. Percentage of mSSC-derived offsprings was 4.8% (47/980) and which was lower than those (11.7% (67/572)) of ESC-derived ones (P<0.05). However, even though different genetic background of mSSC and ESC origin, the production efficiency of coat-colored chimeric offspring in mSSC group was not different when compared it with ESC (6.4% (3/47) vs. 7.5% (5/67)). From these results, we confirmed that mSSC derived from outbred mice has a pluripotency and a potential to produce chimeric embryos or mice when reaggregatation with mSSC is performed.

  • PDF

Establishment and Characterization of Multipotent Germ Line Stem Cells (MGSCs) from Neonatal Mouse Testis (신생 생쥐 고환에서 기인한 다분화능 생식줄기세포주의 확립 및 특성 분석)

  • Han, Sang-Chul;Song, Haeng-Seok;Jun, Jin-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • Objective: The aim of this study was to investigate whether multipotent germline stem cells (MGSCs) can be established from neonatal mouse testis. Methods: Various cells containing MGSCs were collected from neonatal testis of ICR mice and allocated to plates for in vitro culture. After 7 days in culture, the cells were passed to a fresh culture plate and continuously cultured. From the third or fourth passage, the presumed MGSCs were cultured and maintained on mitomycin C-inactivated STO feeder cells. The MGSCs were cultured in a condition where mouse embryonic stem cells (ESCs) are cultured. Characteristics of the MGSCs were evaluated by RT-PCR, immunocytochemistry, alkaline phosphatase activity, karyotyping, and transmission electron microscopy. Results: Two MGSCs lines were established from 9 pooled sets of neonatal testicular cells. MGSCs colonies were morphologically undistinguishable from ESCs colonies and both MGSC lines as well as ESCs expressed undifferentiated stem cell markers, such as Thy-1, Oct-4, Nanog, Sox2 and alkaline phosphatase. Fine structure of undifferentiated MGSCs were similar to those of ESCs and 60% of MGSCs (12/20) had normal karyotype at passage 10. They were able to form embryoid bodies (EBs) and MGSC-derived EBs expressed marker genes of three germ layers. Conclusion: We could establish the MGSCs from neonatal mouse testis and they were differentiated to multipotent lineages of three germ layers. Molecular characteristics of MGSCs were similar to those of ESCs. Our results suggest a possibility that multipotent stem cells derived from testis, the MGSCs, could replace the ESCs in biotechnology and regenerative medicine.

Methylation Patterns of Imprinting Genes, H19, Igf2r, and Snrpn, in Mouse Embryonic Stem Cells and Nuclear Transferred Embryonic Stem Cells (생쥐의 수정란 배아줄기세포와 체세포핵이식 배아줄기세포에서 각인유전자, H19, Igf2r, Snrpn의 메틸화 경향)

  • Lee, Min-Ho;Ju, Jin-Young;Cho, Youl-Hee;Shim, Sung-Han
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.253-259
    • /
    • 2010
  • DNA methylation is one of the major epigenetic regulations of gene expression. The DNA methylation patterns are dramatically changed during gametogenesis and embryogenesis, and especially, it has been known that embryonic stem cells show a distinct methylation pattern. In this study, we examined the methylation patterns of imprinting genes, H19, Igf2r, and Snrpn, in stem cells induced from fertilized embryo (fES) and somatic cell nuclear transferred embryo (ntES). The methylation pattern of H19 gene in both fES and ntES were similar. However, the methylation patterns of Igf2r and Snrpn in ntES (hypermethylated) were slightly different from fES cells.

In Vitro Differentiated Functional Cardiomyocytes from Parthenogenetic Mouse Embryonic Stem Cells (단위발생유래 생쥐 배아줄기세포로부터 체외 분화된 기능성 심근세포)

  • Shin Hyun-Ah;Kim Eun-Young;Lee Keum-Sil;Cho Hwang-Yun;Lee Won-Don;Park Se-Pill;Lim Jin-Ho
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This study was conducted to examine whether the parthenogenetic mouse embryonic stem (P-mES) cells can differentiate into functional cardiomyocytes in vitro similar to (mES) cells. p-mES04 and IVF-derived mES03 cells were cultured by suspension culture for 4 days. The formed embryoid bodies (EBs) were treated with 0.75% dimethyl-sulfoxide (DMSO) for further 4 days (4-/4+), and then plated onto gelatin coated culture dish. The appearance of contracting cardiomyocytes from the P-mES04 and mES03 cells was examined for 30 days. The highest cumulative frequency was detected at days 13 (69.83%) and 22 (61.3%), respectively. By immunocytochemistry, beating P-mES04 cells were positively stained with muscle specific anti-sarcomeric a-actinin Ab and cardiac specific anti-cardiac troponin I Ab similar to contracted mES03 cells. When the expression of cardiac muscle-specific genes was analyzed by RT-PCR, beating P-mES04 cells were expressed cardiac specific L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide $7{\beta}$, GATA binding protein 4 and atrial natriuretic factor, but not expressed skeletal muscle specific L-type calcium channel, a1S, which was similar to male adult heart cells and mES03-derived beating cardiomyocytes. The result demonstrates that the P-mES cells can be used as an alternative for the study on the characteristic analysis of in vitro cardiomyocyte differentiation from the ES cells.

TGF-$\alpha$로 분화 유도된 인간 배아줄기세포 이식에 따른 파킨슨 동물 모델 생쥐의 행동 개선

  • 이금실;김용식;신현아;조황윤;김은영;이원돈;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.271-271
    • /
    • 2004
  • 본 실험은 TGF-a를 처리하여 분화가 유도된 인간배아 줄기세포를 파킨슨 동물모델에 이식하여 숙주세포에서의 생존 및 이식효과를 검토하고자 실시하였다. TGF-a로 분화된 세포의 이식효과를 판정하고자 배양시 TGF-a처리군과 처리하지 않은 군으로 나누어 분화를 유도한 인간배아 줄기세포를 hoechst33342로 표지 하여 병변 유발과 동일한 방법으로 동측 선조체내에 4×10⁴개/2ul가 되도록 이식하고(이식 위치: AP 0.7, ML 2.0, DV3.4) 이식 후 2, 4주에서 행동학적 변화를 관찰하고 4주에 동물을 희생시켜 4% PFA를 이용하여 뇌 조직을 고정하고 뇌 조직은 40㎛ 두께로 동결 절편을 만들어 면역조직화학염색을 시행하여 신경세포로의 분화 및 TH 발현 여부를 관찰하였고 분화의 표지물질로 nestin, NF200, GFAP, TH를 사용하여 형태학적 변화를 관찰하였다. (중략)

  • PDF

Mouse Embryonic Stem Cell Uptakes of Buforin 2 and pEP-1 Conjugated with EGFP (생쥐 배아 줄기세포의 Buforin 2 및 pEP-1에 결합된 EGFP의 세포 내 수송)

  • Jung, Su-Hyun;Park, Seong-Soon;Lim, Hyun-Jung;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.11 no.2
    • /
    • pp.111-119
    • /
    • 2007
  • Differentiation of cells can be induced through modulation of endogenous regulators using exogenous factors. Useful transfection systems to transport a specific exogenous regulator into cell have been tried but still there are many obstacles to overcome. In this study, we examined the transfection efficiency of cell permeable peptides (CPPs) in mouse embryonic stem cell under the various conditions. To identify the CPP-mediated translocation of a protein, we employed recombinant CPP-enhanced green fluorescent protein (EGFP). Viability of R1 cells was different between experimental groups depending on the kind of CPP and the concentration of CPP-EGFP. Translocation of CPP-EGFPs into the R1 cells was not detected until 30 min after CPP-EGFPs treatment in all groups. After 1 hr, translocation of pEP-1-EGFP-N was detected, but it could not be detected in the other group. Transfection of pEP-1EGFP-N was independent on its concentration. The time course did not show saturation even after 24 hr in pEP-1-EGFP-N. These results showed that the permeability depended on the kind of CPP and the location of His-tag in the case of examined CPPs, and did not need biological energy. On summary, the efficiency of transfection of CPP-EGFP depends on the CPP sequences but the culture time is not a key factor in transfection for the mouse embryonic stem cell. For the future studies to improve the efficiency of translocation of protein into embryonic stem cells, it is needed to develop modified CPP or mediator. The studies would be very useful to induce the differentiation of embryonic stem cells.

  • PDF

Establishment of Embryonic Stem Cell Line from Isolated Blastomeres from Mouse Preimplantation Embryos (생쥐 초기 배아에서 분리한 할구를 이용한 배아줄기세포주 확립)

  • Lim, Chun Kyu;Sung, Ji Hye;Choi, Hye Won;Cho, Jae Won;Shin, Mi Ra;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2006
  • Objective: The aim of this study was to investigate whether embryonic stem (ES) cells can be established from isolated blastomeres of mouse embryos. Methods: Blastomeres were separated from mouse (C57Bl/6J) 2- or 4-cell embryos. Isolated blastomeres or whole 4-cell embryos were co-cultured with mitosis-arrested STO feeder cells in DMEM supplemented with recombinant murine leukemia inhibitory factor and ES-qualified fetal bovine serum. After the tentative ES cell lines were maintained from isolated blastomeres or whole embryos, some of them were frozen and the others were sub-cultured continually. Characteristics of tentative ES cell lines as were evaluated for specific genes expressions with immunocytochemistry and RT-PCR. Results: One ES cell line (3.0%) was established from isolated blastomere of 2-cell embryo and one cell line (4.0%) from isolated two blastomeres of 4-cell embryo. And five cell lines (16.7%) were established from whole 4-cell embryos. Both cell lines from isolated blastomere and whole embryo expressed mouse ES cell specific markers such as SSEA-1, Oct-4 and alkaline phosphatase. Marker genes of three germ layers were expressed from embryoid bodies of both cell lines. Conclusion: This study suggests that mouse ES cells could be established from isolated blastomeres, although the efficiency is lower than whole embryos. This animal model could be applied to establishment of autologous human ES cells from biopsied blastomeres of preimplantation embryos in human IVF-ET program.