Park, Eunyoung;Kim, Yujin;Lee, Yewon;Seo, Yeongeun;Kang, Joohyun;Oh, Hyemin;Kim, Joo-Sung;Yoon, Yohan
Journal of Food Hygiene and Safety
/
v.36
no.6
/
pp.504-509
/
2021
The objective of this study was to develop dynamic model to describe the kinetic behavior of E. coli in sliced smoked duck. E. coli was detected in 2 sliced smoked duck samples (16.7%) at 1.23 log CFU/g. The maximum specific growth rate (𝜇max) of E. coli ranged from 0.05 to 0.36 log CFU/g/h, and lag phase duration (LPD) ranged from 4.39 to 1.07 h, depending on the storage at 10-30℃, and h0 value ranged from 0.24 to 0.51. The developed model was validated with observed values obtained at 13℃ and 25℃. The model performance was appropriate with 0.130 of root mean squared error (RMSE), and the dynamic model also described properly kinetic behavior of E. coli in sliced smoked duck samples. These results indicate that E. coli can contaminate sliced smoked ducks and the models developed with the E. coli isolates are useful in describing the kinetic behavior of E. coli in sliced smoked duck.
Ji Su Song;Dong Suk Kim;Hyo Sung Kim;Eun Ji Jung;Hyun Jung Hwang;Jaesung Park
Journal of Bio-Environment Control
/
v.32
no.4
/
pp.434-441
/
2023
Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.
The objective of this study was to make growth and yield models of sowthistle (Ixeris dentata Nakai) by using an expolinear functional equation in a closed-type plant production system. The growth and yield of hydroponically-grown sowthistle were investigated under four different planting distances ($15{\times}10$, $15{\times}15$, $15{\times}20$, and $15{\times}25$ cm). Shoot dry weights per plant was the highest at $15{\times}25$ cm, but was the lowest at $15{\times}10$ cm. Shoot dry weights per area was the highest at $15{\times}15$ cm, but was the lowest at $15{\times}25$ cm. The optimum planting density and planting distance for yield of sowthistle were 44 plants/$m^2$ and $15{\times}15$ cm, respectively. Shoot dry weights per plant and per area were showed as an expolinear type functional equation. A linear relationship between shoot dry and fresh weights was observed to be linear regardless of the planting distance. Crop growth rate, relative growth rate and lost time in an expolinear functional equation showed quadratic function form. Radiation use efficiency of sowthistle was $4.3-6.1g{\cdot}MJ^{-1}$. The measured and estimated shoot dry weights showed a good agreement using days after transplanting as input data. It is concluded that the expolinear growth model can be a useful tool for quantifying the growth and yield of sowthistle in a closed-type plant production system.
In this study, we analyzed environmental factors including annual fruit growth and meteorological conditions in Suwon area from 2000 to 2014 to develop and verify a fruit width prediction model in 'Fuji' apple. The 15-year average of full bloom data was April 28 and that of fruit development period was 181 days. The fruit growth until 36 days after full bloom followed single sigmoid curve. The environmental factors affecting fruit width were BIO2, precipitation in September, the average of daily maximum and minimum temperature in April, minimum temperature in August, and growing degree days (GDD) in April. Among them, the model was constructed by combining BIO2 and precipitation in September, which are not cross-correlated with each other or, with other factors. And then, the final model was selected as 19.33095 + (5.76242 ${\times}$ BIO2) - (0.01891 ${\times}$ September precipitation) + (2.63046 ${\times}$ minimum temperature in April) which was the most suitable model with AICc of 92.61 and the adjusted $R^2$ value of 0.53. The model was compared with the observed values f rom 2000 to 2014. As a result, the mean difference between the measured and predicted values of 'Fuji' apple fruit width was ${\pm}2.9mm$ and the standard deviation was 3.54.
Sora Kim;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyelim Lee;Yeongmo Son
Journal of Korean Society of Forest Science
/
v.112
no.2
/
pp.209-216
/
2023
This study aimed to use national forest inventory data to develop a forest productivity index and yield prediction model of a Tilia amurensis stand. The site index displaying the forest productivity of the Tilia amurensis stand was developed as a Schumacher model, and the site index classification curve was generated from the model results; its distribution growth in Korea ranged from 8-16. The growth model using age as an independent variable for breast height and height diameter estimation was derived from the Chapman-Richards and Weibull model. The Fitness Indices of the estimation models were 0.32 and 0.11, respectively, which were generally low values, but the estimation-equation residuals were evenly distributed around 0, so we judged that there would be no issue in applying the equation. The stand basal area and site index of the Tilia amurensis stand had the greatest effect on the stand-volume change. These two factors were used to derive the Tilia amurensis stand yield model, and the model's determination coefficient was approximately 94%. After verifying the residual normality of the equation and autocorrelation of the growth factors in the yield model, no particular problems were observed. Finally, the growth and yield models of the Tilia amurensis stand were used to produce the makeshift stand yield table. According to this table, when the Tilia amurensis stand is 70 years old, the estimated stand-volume per hectare would be approximately 208 m3 . It is expected that these study results will be helpful for decision-making of Tilia amurensis stands management, which have high value as a forest resource for honey and timber.
In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.
Kim, Kyungmi;Lee, Heeyoung;Moon, Jinsan;Kim, Youngjo;Heo, Eunjeong;Park, Hyunjung;Yoon, Yohan
Journal of Food Hygiene and Safety
/
v.28
no.3
/
pp.217-221
/
2013
This study developed predictive models for the kinetic behavior of Staphylococcus aureus on processed cheeses. Mozzarella slice cheese and cheddar slice cheese were inoculated with 0.1 ml of a S. aureus strain mixture (ATCC13565, ATCC14458, ATCC23235, ATCC27664, and NCCP10826). The inoculated samples were then stored at $4^{\circ}C$ (1440 h), $15^{\circ}C$ (288 h), $25^{\circ}C$ (72 h), and $30^{\circ}C$ (48 h), and the growth of all bacteria and of S. aureus were enumerated on tryptic soy agar and mannitol salt agar, respectively. The Baranyi model was fitted to the growth data of S. aureus to calculate growth rate (${\mu}_{max}$; ${\log}CFU{\cdot}g^{-1}{\cdot}h^{-1}$), lag phase duration (LPD; h), lower asymptote (log CFU/g), and upper asymptote (log CFU/g). The growth parameters were further analyzed using the square root model as a function of temperature. The model performance was validated with observed data, and the root mean square error (RMSE) was calculated. At $4^{\circ}C$, S. aureus cell growth was not observed on either processed cheese, but S. aureus growth on the mozzarella and cheddar cheeses was observed at $15^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. The ${\mu}_{max}$ values increased, but LPD values decreased as storage temperature increased. In addition, the developed models showed acceptable performance (RMSE = 0.3500-0.5344). This result indicates that the developed kinetic model should be useful in describing the growth pattern of S. aureus in processed cheeses.
This study was conducted to construct a empirical yield table for Pinus densiflora in real forest. Since existing normal yield tables have been derived by studying and analyzing communities in ideal environment for tree growth, those tables provide more over-estimated values than ones from real forest. Because of this, there are some difficulties to apply the tables to empirical forest except for normal forest. In this study, therefore, we estimated stand growth for real forest on P. densiflora as the representative species of conifers. We used 1,957 sample plot data of P. densiflora in central Korea from National Forest Inventory (NFI) system, and analyzed through estimation, recovery and prediction in order by using Weibull function as a diameter distribution model. Weilbull and Schumacher models were applied for estimating mean DBH and mean basel area and it was found that the site index for P. densiflora in central Korea ranges from 8 to 14 at reference age 30. According to site 12 in the stand yield table, the Mean Annual Increment (MAI) of P. densiflora was $4.42m^3/ha$ at 30 years of age. Compared to existing volume table constructed before, it is showed that MAI of this study were lower. According to the paired t-test that is conducted with the gap of volume values between normal forest and real forest by site index and age, the P-value was less than 0.001 which is recognized to have a statistically significant difference. Based on the results in this study, it is considered to be helpful for practical management and management policy on P. densiflora in central Korea.
In this research, forest cover distribution change, forest volume and carbon stock in Yongin-city, Gyeonggi procince were estimated focused on the forest of Yongin-City using forest type map and HyTAG model in relation to climate change. Present forest volume of Yongin-city was estimated using the data from $5^{th}$ Forest Type Map and Korean National Forest Inventory (NFI). And for the future 100 years potential forest distribution by 10-year interval were estimated using HyTAG model. Forest volume was also calculated using algebraic differences form of the growth model. According to the $5^{th}$ Forest Type Map, present needleleaf forest occupied 37.8% and broadleaf forest 62.2% of forest area. And the forest cover distribution after 30 years would be changed to 0.13% of needleleaf forest and 99.97% of broadleaf forest. Finally, 60 years later, whole forest of Yongin-city would be covered by broad-leaf forest. Also the current forest carbon stocks was measured 1,773,862 tC(56.79 tC/ha) and future carbon stocks after 50 years was predicted to 4,432,351 tC(141.90 tC/ha) by HyTAG model. The carbon stocks after 100 years later was 6,884,063 tC (220.40 tC/ha). According to the HyTAG model prediction, Pinus koraiensis, Larix kaempferi, Pinus rigida, and Pinus densiflora are not suitable to the future climate of 10-year, 30-year, 30-year, and 50-year later respectively. All Quercus spp. was predicted to be suitable to the future climate.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.411-411
/
2023
미래 대기 이산화탄소 농도가 증가함에 따라 강수 등 기후의 변화하고, 이는 유출량을 포함한 수문 순환 뿐 아니라 지면 식생 생장에 영향을 줄 것으로 예상된다. 이에 본 연구에서는 미래 CO2 증가에 따른 식생의 변화와 이로 인한 지표 유출량의 변화에 대해 이해하고자 한다. Intergovernmental Panel on Climate Change (IPCC) 6차 평가보고서에서 제시한 표준 온실가스 경로 중 탄소 모듈이 포함된 Coupled Model Intercomparison Project phase 6 biogeochemistry (CMIP6-BGC) 모델과 탄소 모듈이 포함안된 CMIP6 모델 결과를 활용하였다. 공통 사회경제경로 시나리오(Shared Socio-economic Pathway; SSP) 중 고탄소 시나리오인 SSP585에 따른 모델 결과물을 활용하였다. 표면 유출량 자료에 과거 기간 임계수준 방법을 (Threshold Level Method) 적용하여 동아시아 지역 극한 건조 및 습윤 상태의 빈도와 강도를 CMIP6-BGC와 CMIP6에 대해 평가하였다. CMIP6-BGC 경우, 건조 및 습윤 상태의 빈도는 각각 6.17%, 5.03% , CMIP6 경우 각각 9.29%, 6.70% 으로 예측되어, CMIP6-BGC가 CMIP6 보다 극한 상태를 과소평가하는 경향을 보였다. 또한, 잎 면적 지수(Leaf Area Index; LAI), 증산량 등의 변수를 분석하여, 기 도출된 CMIP6-BGC와 CMIP6 간의 극한 건조 및 습윤 상태 예측의 차이가 발생한 메카니즘을 이해하고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.