Soybean plants were exposed to HTO vapor in an exposure box for 1 hour at different growth stages. Relative concentrations of TFWT at the end of exposure (percent ratios of TFWT concentrations to mean HTO concentrations in air moisture in the box during exposure) decreased on the whole in the order of leaf > shell > seed > stem with the highest values of 40.2% and 6.4% for leaf and stem, respectively. TFWT concentrations reduced by factors of several thousands to several hundred-thousands from the end of exposure till the harvest. The reduction factor decreased in the order of leaf > shell > seed > stem. Relative OBT concentrations at harvest (ratios of the OBT concentration in the dry plant part at harvest to the initial leaf TFWT concentration, ml $g^{-1}$) were in the range of $2.2{\times}10^{-5}{\sim}9.5{\times}10^{-3}$ for seeds being the highest when the exposure was performed at the actively seed-developing stage. The exposure time-dependent variation in the OBT concentration was much greater in seeds and shells than in leaves and stems. It was indicated that OBT would contribute to almost all the radiation dose due to the consumption of soybean seeds in most cases after an acute exposure of growing plants to HTO vapor. Present results are applicable to establishing and validating soybean $^3H$ models for an acute accidental release of HTO.
Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
Journal of Bio-Environment Control
/
v.32
no.4
/
pp.384-395
/
2023
Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.
Korean Journal of Agricultural and Forest Meteorology
/
v.19
no.3
/
pp.164-173
/
2017
Alternative cropping systems would be one of climate change adaptation options. Suitable areas for a crop could be identified using a climate suitability model. The EcoCrop model has been used to assess climate suitability of crops using monthly climate surfaces, e.g., the digital climate map at high spatial resolution. Still, a high-performance computing approach would be needed for assessment of climate suitability to take into account a complex terrain in Korea, which requires considerably large climate data sets. The objectives of this study were to implement a script for R, which is an open source statistics analysis platform, in order to use the EcoCrop model under a parallel computing environment and to assess climate suitability of maize using digital climate maps at high spatial resolution, e.g., 1 km. The total running time reduced as the number of CPU (Central Processing Unit) core increased although the speedup with increasing number of CPU cores was not linear. For example, the wall clock time for assessing climate suitability index at 1 km spatial resolution reduced by 90% with 16 CPU cores. However, it took about 1.5 time to compute climate suitability index compared with a theoretical time for the given number of CPU. Implementation of climate suitability assessment system based on the MPI (Message Passing Interface) would allow support for the digital climate map at ultra-high spatial resolution, e.g., 30m, which would help site-specific design of cropping system for climate change adaptation.
Sea level rise, accompanied by climate change, is expected to exacerbate seawater intrusion in the coastal groundwater system. As the salinity of saturated groundwater increases, salinity can increase even in the unsaturated soil above the groundwater surface, which may cause crop damage in the agricultural land. The other adverse impact of sea level rise is reduced unsaturated soil thicknesses. In this study, a composite model to assess impacts of sea level rise in coastal agricultural land is proposed. The composite model is based on the combined applications of a three dimensional model for simulating saltwater intrusion into the groundwater and a vertical one dimensional model for simulating unsaturated zone flow and transport. The water level and salinity distribution of groundwater are calculated using the three dimensional seawater intrusion model. At some uppermost nodes, where salinity are higher than the reference value, of the 3D mesh one dimensional unsaturated zone modeling is conducted along the soil layer between the ground water surface and the ground surface. A particular location is judged salinized when the concentration at the root-zone depth exceeds the tolerable salinity for ordinary crops. The developed model is applied to a hypothetical agricultural reclamation land. IPCC RCP 4.5 and 8.5 scenarios were used as sea level rise data. Results are presented for 2050 and 2100. As a result of the study, it is predicted that by 2100 in the climate change scenario RCP 8.5, there will be 7.8% increase in groundwater saltwater-intruded area, 6.0% increase of salinized soil area, and 1.6% in increase in water-logging area.
A computer program written to predict blast occurrence based on micro climatic events was developed and tested as an on-site microcomputer in field plots in 1984 and 1985. A microcomputer unit operating on alkaline batteries; continuously monitored air temperature, leaf wetness, and relative humidity; interpreted the microclimate information in relation to rice blast development and displayed daily values (0-8) of blast units of severity (BUS). Cumulative daily BUS values (CBUS) were highly correlated with blast development on the two susceptible cultivars, M-201 and Brazos grown in field plots. When CBUS values were used to predict the logit of disease proportions, the average coefficients of determination $(R^2)$ between these two factors were 71 to $91\%$, depending on cultivar and year. This was a significant improvement when compared to 61 to $79\%$ when days were used as a predictor of logit disease severity. The ability of CBUS to predict logit disease severity was slightly less with Brazos than M-201. This is significant inasmuch as Brazos showed field resistance at mid-season. The results in this study indicate that the model has the potential for future use and that the model could be improved by incorporating other variables associated with host plants and pathogen races in addition to the key environmental variables.
Korean Journal of Agricultural and Forest Meteorology
/
v.20
no.2
/
pp.205-213
/
2018
Development and validation of crop models often require measurements of biomass for the crop of interest. Considerable efforts would be needed to obtain a reasonable amount of biomass data because the destructive sampling of a given crop is usually used. The Kinect sensor, which has a combination of image and depth sensors, can be used for estimating crop biomass without using destructive sampling approach. This approach could provide more data sets for model development and validation. The objective of this study was to examine the applicability of the Kinect sensor for estimation of chinese cabbage fresh weight. The fresh weight of five chinese cabbage was measured and compared with estimates using the Kinect sensor. The estimates were obtained by scanning individual chinese cabbage to create point cloud, removing noise, and building a three dimensional model with a set of free software. It was found that the 3D model created using the Kinect sensor explained about 98.7% of variation in fresh weight of chinese cabbage. Furthermore, the correlation coefficient between estimates and measurements were highly significant, which suggested that the Kinect sensor would be applicable to estimation of fresh weight for chinese cabbage. Our results demonstrated that a depth sensor allows for a non-destructive sampling approach, which enables to collect observation data for crop fresh weight over time. This would help development and validation of a crop model using a large number of reliable data sets, which merits further studies on application of various depth sensors to crop dry weight measurements.
The successional status and potential natural vegetation were examined in the natural deciduous forest in Mt. Chombong area. The examination was based on the subsequent process of generation replacement by understory saplings for the dominant canopy trees within 106 20mx20m square sample plots. The transition matrix model, which was modified from mathematical theory of Markov chain, was employed to analyze the successional status of the study forest. The model suggests that study forest is still seral, and it is considered to be more than 500 years away from the steady state or climax in terms of species composition. The simulations predict a remarkable decrease in the proportion of species composition of the present dominant Quercus mongolica and Kalopanax pictus from current 42.6% and 8.1% to less than 13.3% and 0.5%, respectively, at the steady state. On the contrary, the proportions of Abies holophylla, Acer mono, Fraxinus mandshurica, Tilia amurensis, and Acer pseudo-sieboldianum will increase at the steady state. The change of predicted composition ratio was generally coincide with the result of tolerance index to be compared with the study model. The hypothesis and sensitivity of the model were also discussed to evaluate the applicability to the real situation. The overall results indicated that the present dynamics of the forest must reflect the seral state due to previous disturbance mainly by human related interference.
In this chapter, we summarize the results on the optimal location selection and present limitation and direction of research. In order to reach the objective, this study selected and tested the interaction model which obtains the value of co-ordinates on location selection through the optimization technique. This study used the original variables in the model, but the results indicated that there is difference in reality. In order to overcome this difference, this study peformed market survey and found the new variables (first data such as price, quality and assortment of goods, and the second data such as aggregate area, and area of shop, and the number of cars in the parking lot). Then this study determined an optimal variable by empirical analysis which compares an actual value of market share in 1988 with the market share yielded in the model. However, this study found the market share in each variables does not reflect a reality due to an assumption of λ-value in the model. In order to improve this, this study performed a sensitivity analysis which adds the λ value from 1.0 to 2.9 marginally. The analyzed result indicated the highest significance with the market share ratio in 1998 at λ of 1.0. Applying the weighted value to a variable from each of the first data and second data yielded the results that more variables from the first data coincided with the realistic rank on sales. Although this study have some limits and improvements, if a marketer uses this extended model, more significant results will be produced.
For developing a canopy photosynthesis model, an efficient method to measure the photosynthetic rate in a growth chamber is required. The objective of this study was to develop a method for establishing canopy photosynthetic rate curves of romaine lettuce (Lactuca sativa L.) with light intensity and CO2 concentration variables using controlled growth chamber. The plants were grown in plant factory modules, and the canopy photosynthesis rates were measured in sealed growth chambers made of acrylic (1.0 × 0.8 × 0.5 m). First, the canopy photosynthetic rates of the plants were measured, and then the time constants were compared between two application methods: 1) changing light intensity (340, 270, 200, and 130 μmol·m-2·s-1) at a fixed CO2 concentration (1,000 μmol·mol-1) and 2) changing CO2 concentration (600, 1,000, 1,400, and 1,800 μmol·mol-1) at a fixed light intensity (200 μmol·m-2·s-1). Second, the canopy photosynthetic rates were measured by changing the light intensity at a CO2 concentration of 1,000 μmol·mol-1 and compared with those measured by changing the CO2 concentration at a light intensity of 200 μmol·m-2·s-1. The time constant when changing the CO2 concentration at the fixed light intensity was 3.2 times longer, and the deviation in photosynthetic rate was larger than when changing the light intensity. The canopy photosynthetic rate was obtained stably with a time lag of one min when changing the light intensity, while a time lag of six min or longer was required when changing the CO2 concentration. Therefore, changing the light intensity at a fixed CO2 concentration is more appropriate for short-term measurement of canopy photosynthesis using a growth chamber.
This experiment was conducted to investigate the effects of water depths on seedling stand and early growth of califonia rice varieties, S201, M202, A301, Italico livorno and Korean variety, Hwaseongbyeo, and barnyardgrass (Echinochloa crus-galli) The coleoptile length of rice was longer with deep water depth while for the radicle length shorten. As water depth was increased, the percentage of seedling stand were decreased slightly in rice, while sharply increased in barnyardgrass. Plant height of rice with increasing water depth were longer, whereas that of barnyardgrass reduced significantly with weaker. Tiller number of rice and barnyardgrass were significantly reduced as water depth increased. Dry matter weight and healthy score of rice seedling at 35DAS were highest in 7.5cm water depth followed saturated moisture, 15, and 22.5cm water depth, while for barnyardgrass those were especially negatively affected by deep water depth. These results showed that the seedling stand and early growth of barnyardgrass was highly suppressed by deeper water levels compared with rice. Rice cultivars which are showes growth characteristics in deeper water levels at early growth stage were Italico livorno and S201 in Japonica / Indica.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.