• Title/Summary/Keyword: 생성 AI 콘텐츠

Search Result 59, Processing Time 0.02 seconds

Real2Animation: A Study on the application of deepfake technology to support animation production (Real2Animation:애니메이션 제작지원을 위한 딥페이크 기술 활용 연구)

  • Dongju Shin;Bongjun Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • Recently, various computing technologies such as artificial intelligence, big data, and IoT are developing. In particular, artificial intelligence-based deepfake technology is being used in various fields such as the content and medical industry. Deepfake technology is a combination of deep learning and fake, and is a technology that synthesizes a person's face or body through deep learning, which is a core technology of AI, to imitate accents and voices. This paper uses deepfake technology to study the creation of virtual characters through the synthesis of animation models and real person photos. Through this, it is possible to minimize various cost losses occurring in the animation production process and support writers' work. In addition, as deepfake open source spreads on the Internet, many problems emerge, and crimes that abuse deepfake technology are prevalent. Through this study, we propose a new perspective on this technology by applying the deepfake technology to children's material rather than adult material.

Artificial Intelligence Algorithms, Model-Based Social Data Collection and Content Exploration (소셜데이터 분석 및 인공지능 알고리즘 기반 범죄 수사 기법 연구)

  • An, Dong-Uk;Leem, Choon Seong
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.23-34
    • /
    • 2019
  • Recently, the crime that utilizes the digital platform is continuously increasing. About 140,000 cases occurred in 2015 and about 150,000 cases occurred in 2016. Therefore, it is considered that there is a limit handling those online crimes by old-fashioned investigation techniques. Investigators' manual online search and cognitive investigation methods those are broadly used today are not enough to proactively cope with rapid changing civil crimes. In addition, the characteristics of the content that is posted to unspecified users of social media makes investigations more difficult. This study suggests the site-based collection and the Open API among the content web collection methods considering the characteristics of the online media where the infringement crimes occur. Since illegal content is published and deleted quickly, and new words and alterations are generated quickly and variously, it is difficult to recognize them quickly by dictionary-based morphological analysis registered manually. In order to solve this problem, we propose a tokenizing method in the existing dictionary-based morphological analysis through WPM (Word Piece Model), which is a data preprocessing method for quick recognizing and responding to illegal contents posting online infringement crimes. In the analysis of data, the optimal precision is verified through the Vote-based ensemble method by utilizing a classification learning model based on supervised learning for the investigation of illegal contents. This study utilizes a sorting algorithm model centering on illegal multilevel business cases to proactively recognize crimes invading the public economy, and presents an empirical study to effectively deal with social data collection and content investigation.

  • PDF

Global Technical Knowledge Flow Analysis in Intelligent Information Technology : Focusing on South Korea (지능정보기술 분야에서의 글로벌 기술 지식 경쟁력 분석 : 한국을 중심으로)

  • Kwak, Gihyun;Yoon, Jungsub
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.24-38
    • /
    • 2021
  • This study aims to measure Korea's global competitiveness in intelligent information technology, which is the core technology of the 4th industrial revolution. For analysis, we collect patents of each field and prior patents cited by them, which are applied at the U.S. Patent Office (USPTO) between 2010 and 2018 from PATSTAT Online. A global knowledge transfer network was established by grouping citing- and cited-relationships at a national level. The in-degree centrality is used to evaluate technology acceptance, which indicates the process of absorbing existing technological knowledge to create new knowledge in each field. Second, to evaluate the impact of existing technological knowledge on the creation of new one, the out-degree centrality is investigated. Third, we apply the PageRank algorithm to qualitatively and quantitatively investigate the importance of the relationships between countries. As a result, it is confirmed through all the indicators that the AI sector is currently the least competitive.

The Perception of Secondary School Principals on Competency Education (학교 현장에서 역량교육 실행에 대한 학교장의 인식 탐색)

  • Cho, Bokyung;Jeon, Young-Joo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.247-257
    • /
    • 2021
  • It seems likely that the characteristics of future society will include an emphasis on diverse and expansive data sets and the use of AI technology. Because of this, school leaders within the traditional, textbook based educational framework there will be changes should meet the 2015 Revised National Curriculum and prepare students for future societies. The purpose of this research paper was to suggest the nature of and policies necessary for better educational processes in middle and high schools after they've been improved in accordance with the 2015 Revised National Curriculum. This paper implemented its survey and interview of school principals through the guidelines provided by UNESCO Bangkok's transversal competence research. Analysis results and research participants were practicing strengthened education in the course of their daily activities. The educators involved received positive evaluation from their students. Further, pedagogical opinions were suggested regarding the effects of school principals on various strengthened education elements. This paper's suggestions within the context of the 2015 Revised National Curriculum are expected to continue reinforcing the overall positive effect of the currently in practice strengthened education methods. Furthermore, it can contribute to the development of the next National Curriculum with empricial data.

Development of Machine Learning Model Use Cases for Intelligent Internet of Things Technology Education (지능형 사물인터넷 기술 교육을 위한 머신러닝 모델 활용 사례 개발)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.449-457
    • /
    • 2024
  • AIoT, the intelligent Internet of Things, refers to a technology that collects data measured by IoT devices and applies machine learning technology to create and utilize predictive models. Existing research on AIoT technology education focused on building an educational AIoT platform and teaching how to use it. However, there was a lack of case studies that taught the process of automatically creating and utilizing machine learning models from data measured by IoT devices. In this paper, we developed a case study using a machine learning model for AIoT technology education. The case developed in this paper consists of the following steps: data collection from AIoT devices, data preprocessing, automatic creation of machine learning models, calculation of accuracy for each model, determination of valid models, and data prediction using the valid models. In this paper, we considered that sensors in AIoT devices measure different ranges of values, and presented an example of data preprocessing accordingly. In addition, we developed a case where AIoT devices automatically determine what information they can predict by automatically generating several machine learning models and determining effective models with high accuracy among these models. By applying the developed cases, a variety of educational contents using AIoT, such as prediction-based object control using AIoT, can be developed.

Deep Learning based Vehicle AR Manual for Improving User Experience (사용자 경험 향상을 위한 딥러닝 기반 차량용 AR 매뉴얼)

  • Lee, Jeong-Min;Kim, Jun-Hak;Seok, Jung-Won;Park, Jinho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.125-134
    • /
    • 2022
  • This paper implements an AR manual for a vehicle that can be used even in the vehicle interior space where it is difficult to apply the augmentation method of AR content, which is mainly used, and applies a deep learning model to improve the augmentation matching between real space and virtual objects. Through deep learning, the logo of the steering wheel is recognized regardless of the position, angle, and inclination, and 3D interior space coordinates are generated based on this, and the virtual button is precisely augmented on the actual vehicle parts. Based on the same learning model, the function to recognize the main warning light symbols of the vehicle is also implemented to increase the functionality and usability as an AR manual for vehicles.

Generative AI Jeonse Fraud Prevention System (생성형 인공지능 전세 사기 방지 시스템)

  • Yeon-Jae Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.173-180
    • /
    • 2024
  • Along with its importance, the real estate market poses risks of various fraudulent activities. Recently, a surge in real estate-related scams, such as lease fraud, has caused great financial damage to many ordinary people. These problems are often caused by the complexity of real estate transactions and information imbalance. Therefore, there is an urgent need to secure reliability and improve transparency in the transaction process. In this paper, to solve this real estate fraud problem, we propose a chatbot system using digital technology and artificial intelligence, especially GPT (Generative Pre-Trained Transformer). This system serves to protect users from fraud by providing them with precautions and confirmations in the lease transaction process. In addition, GPT-based chatbots respond to questions from users in time, contributing to reducing uncertainty in the transaction process and increasing reliability.

Development and Efficacy Validation of an ICF-Based Chatbot System to Enhance Community Participation of Elderly Individuals with Mild Dementia in South Korea (우리나라 경도 치매 노인의 지역사회 참여 증진을 위한 ICF 기반 Decision Tree for Chatbot 시스템 개발과 효과성 검증)

  • Haewon Byeon
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.3
    • /
    • pp.17-27
    • /
    • 2024
  • This study focuses on the development and evaluation of a chatbot system based on the International Classification of Functioning, Disability, and Health (ICF) framework to enhance community participation among elderly individuals with mild dementia in South Korea. The study involved 12 elderly participants who were living alone and had been diagnosed with mild dementia, along with 15 caregivers who were actively involved in their daily care. The development process included a comprehensive needs assessment, system design, content creation, natural language processing using Transformer Attention Algorithm, and usability testing. The chatbot is designed to offer personalized activity recommendations, reminders, and information that support physical, social, and cognitive engagement. Usability testing revealed high levels of user satisfaction and perceived usefulness, with significant improvements in community activities and social interactions. Quantitative analysis showed a 92% increase in weekly community activities and an 84% increase in social interactions. Qualitative feedback highlighted the chatbot's user-friendly interface, relevance of suggested activities, and its role in reducing caregiver burden. The study demonstrates that an ICF-based chatbot system can effectively promote community participation and improve the quality of life for elderly individuals with mild dementia. Future research should focus on refining the system and evaluating its long-term impact.

A Study on the Concept and Characteristics of Metaverse based NFT Art - Focused on <Hybrid Nature> (메타버스 기반 NFT 아트 작품 사례 연구 - <하이브리드 네이처>를 중심으로)

  • Bosul Kim;Min Ji Kim
    • Trans-
    • /
    • v.14
    • /
    • pp.1-33
    • /
    • 2023
  • In the Web 3.0 era, the third generation of web technologies that uses blockchain technology to give creators ownership of data, metaverse is a crucial trend for developing a creator economy. Web 3.0 aims for a value in which content creators are compensated from participation without being dependent on the platform. Blockchain NFT technology is crucial in metaverse, a vital component of Web 3.0, to ensure the ownership of digital assets. Based on the theory that investigates the concept and characteristics of metaverse, this study identifies five features of the metaverse based NFT art ①'Continuity', ②'Presence', ③ 'Concurrency', ④'Economy', ⑤ 'Application of technology'. By focusing on metaverse based NFT art <Hybrid Nature> case study, we analyzed how the concepts and characteristics of the metaverse and NFT art were reflected in the work. This study focuses on the concept of NFT art, which is emerging at the intersection of art, technology and industry, and emphasizes the importance of finding creative, aesthetic, and cultural values rather than the NFT art's potential for financial gain. It is still in its early stage for academic studies to focus on the aesthetic qualities of NFT art. Future academics and researchers can find this study to gain deeper understanding of the traits and artistic, creative aspects of metaverse based NFT art.